25 research outputs found

    “Older-wiser-lesbians” and “baby-dykes”: mediating age and generation in New Queer Cinema

    Get PDF
    Representations of intersections of gender, age, and sexuality can reveal deep-rooted cultural anxieties about older women and sexuality. Images of lesbian ageing are of particular interest in terms of alterity, as the old/er queer woman can combine layers of otherness—not only is she the cultural “other” within heteronormativity, but she can also appear as the opposite of popular culture’s lesbian chic. In this article, a cultural analysis of a range of films—If These Walls Could Talk 2 (dir. Anderson, Coolidge, and Heche 2000), Itty Bitty Titty Committee (dir. Babbit 2007), The Owls (dir. Dunye 2010), Hannah Free (dir. Carlton 2009), and Cloudburst (dir. Fitzgerald 2011)—considers diverse dramatisations of lesbian generations. This article interrogates to what extent alternative cinemas deconstruct normative conceptualisations of ageing. Drawing on recent critiques of post-feminist culture, and a range of feminist and age/ing studies scholarship, it suggests that a linear understanding of ageing and the generational underlies dominant depictions of oppositional binaries of young versus old, of generational segregation or rivalry, and the othering of age. It concludes that non-linear understandings of temporality and ageing contain the potential for New Queer Cinema to counteract such idealisations of youthfulness, which, it argues, is one of the most deep-rooted manifestations of (hetero)normativity

    Age-associated and radiation-induced changes in genome-wide DNA methylation

    No full text
    Der Prozess des Alterns ist ein komplexer multifaktorieller Vorgang, der durch eine sukzessive Verschlechterung der physiologischen Funktionen charakterisiert ist. Ein hohes Alter ist der Hauptrisikofaktor fĂŒr die meisten Krankheiten, einschließlich Krebs und Herz-Kreislauf-Erkrankungen. Das VerstĂ€ndnis der epigenetischen Mechanismen, die in den Prozess des Alterns involviert sind, könnte zur Entwicklung pharmakologischer Interventionen beitragen, die nicht nur die Lebenserwartung erhöhen, sondern auch den Beginn des altersassoziierten funktionellen Abbaus verzögern könnten. Durch die Langzeit-Kultivierung primĂ€rer humaner Fibroblasten wurde ein in vitro Modell fĂŒr das Altern etabliert, das die Identifizierung altersassoziierter DNA-Methylierungs-VerĂ€nderungen ermöglichte. Die in vitro Alterung konnte mit einer globalen Hypomethylierung und einer erhöhten DNA-Methylierung der ribosomalen DNA assoziiert werden. DarĂŒber hinaus konnten DNA-Methylierungs-VerĂ€nderungen in Genen und Signalwegen, die fĂŒr das Altern relevant sind, und ein erhöhtes epigenetisches Alter nachgewiesen werden. Das in vitro Modell fĂŒr das Altern wurde verwendet, um neben den direkten Effekten ionisierender Strahlung auf die DNA-Methylierung auch deren Langzeit-Effekte zu untersuchen. Die Strahlentherapie ist ein entscheidendes Element der Krebstherapie, hat aber auch negative Auswirkungen und kann unter anderem das Risiko fĂŒr die Entwicklung eines Zweittumors erhöhen. Bei externer Bestrahlung wird neben dem Tumor auch gesundes Gewebe ionisierender Strahlung ausgesetzt. Daher ist es wichtig zu untersuchen, wie Zellen mit intakten DNA-Reparatur-Mechanismen und funktionierenden Zellzyklus-Checkpoints durch diese beeinflusst werden. In der frĂŒhen Phase der DNA-Schadensantwort auf Bestrahlung wurden in normalen Zellen keine wesentlichen DNA-Methylierungs-VerĂ€nderungen beobachtet. Mehrere Populations-Verdoppelungen nach Strahlenexposition konnten dagegen eine globale Hypomethylierung, eine erhöhte DNA-Methylierung der ribosomalen DNA und ein erhöhtes epigenetisches Alter detektiert werden. Des Weiteren zeigten Gene und Signalwege, die mit Krebs in Verbindung gebracht wurden, VerĂ€nderungen in der DNA-Methylierung. Als Langzeit-Effekte ionisierender Strahlung traten somit die mit der in vitro Alterung assoziierten DNA-Methylierungs-VerĂ€nderungen verstĂ€rkt auf und ein epigenetisches Muster, das stark an das DNA-Methylierungs-Profil von Tumorzellen erinnert, entstand. Man geht davon aus, dass VerĂ€nderungen der DNA-Methylierung eine aktive Rolle in der Entwicklung eines Tumors spielen. Die durch ionisierende Strahlung induzierten DNA-Methylierungs-VerĂ€nderungen in normalen Zellen könnten demnach in die Krebsentstehung nach Strahlenexposition involviert sein und zu dem sekundĂ€ren Krebsrisiko nach Strahlentherapie beitragen. Es ist bekannt, dass Patienten unterschiedlich auf therapeutische Bestrahlung reagieren. Die Ergebnisse dieser Arbeit weisen darauf hin, dass die individuelle SensitivitĂ€t gegenĂŒber ionisierender Strahlung auch auf epigenetischer Ebene beobachtet werden kann. In einem zweiten Projekt wurden Gesamtblutproben von Patienten mit Werner-Syndrom, einer segmental progeroiden Erkrankung, und gesunden Kontrollen analysiert, um mit dem vorzeitigen Altern in Verbindung stehende DNA-Methylierungs-VerĂ€nderungen zu identifizieren. Werner-Syndrom konnte nicht mit einer globalen Hypomethylierung, jedoch mit einer erhöhten DNA-Methylierung der ribosomalen DNA und einem erhöhten epigenetischen Alter assoziiert werden. Das vorzeitige Altern geht demzufolge mit spezifischen epigenetischen VerĂ€nderungen einher, die eine Beschleunigung der mit dem normalen Altern auftretenden DNA-Methylierungs-VerĂ€nderungen darstellen. Im Rahmen dieser Arbeit konnte die Bedeutung epigenetischer Mechanismen im Prozess des Alterns hervorgehoben werden und gezeigt werden, dass sowohl exogene Faktoren, wie ionisierende Strahlung, als auch endogene Faktoren, wie das in Werner-Syndrom-Patienten mutiert vorliegende WRN-Gen, altersassoziierte DNA-Methylierungs-VerĂ€nderungen beeinflussen können.Aging is a complex, multifactorial process that is characterized by the successive deterioration of normal physiological functions. Age is the main risk factor for most diseases, including cancer. Understanding the epigenetic mechanisms that are involved in the aging process could contribute to the development of pharmacological interventions not only increasing lifespan but also delaying the onset of age-dependent functional decline. An in vitro model for aging was established by long-term culturing of primary human fibroblasts and used to identify age-associated changes in DNA methylation. In vitro aging could be linked to global hypomethylation, elevated DNA methylation of ribosomal DNA, a higher epigenetic age and alterations in DNA methylation of genes and pathways being relevant for aging. The in vitro model for aging allowed to analyse the long-term effects of ionizing radiation on DNA methylation in addition to their direct effects. Radiotherapy is an important element of cancer treatment but can also have negative effects and increase the risk of second cancers. Although radiotherapy is targeted to the tumour, it also affects the surrounding healthy tissue. Therefore, it is important to analyse the impacts of ionizing radiation on normal cells with intact DNA repair and cell cycle checkpoints. The early phase of DNA damage response to radiation does not seem to include great changes in DNA methylation in normal cells. In contrast, several population doublings after radiation exposure, global hypomethylation and DNA methylation changes of genes and pathways being linked to tumorigenesis were detected. Furthermore, DNA methylation of ribosomal DNA and the epigenetic age were increased. Thus, as long-term effects of ionizing radiation the age-associated changes in DNA methylation were enhanced and an epigenetic pattern strongly resembling the DNA methylation profile of tumour cells was observed. It is assumed that alterations in DNA methylation are not only side effects of carcinogenesis but rather play an active role during this process. Radiation-induced changes in DNA methylation could thus be involved in tumour development and contribute to the secondary cancer risk after radiotherapy. It is well known that patients react differently to therapeutic radiation. The results of this study suggest that individual radiation sensitivity is also reflected on epigenetic level. In a second project whole blood samples from patients with Werner syndrome, a segmental progeroid syndrome, and healthy controls were analysed to identify changes in DNA methylation associated with premature aging. Werner syndrome could not be linked to global hypomethylation, but to an increased epigenetic age and elevated methylation levels of ribosomal DNA. Hence, premature aging seems to be accompanied by specific alterations in DNA methylation representing an acceleration of the DNA methylation changes associated with normal aging. This work outlines the importance of epigenetic mechanisms in the aging process and shows that not only exogenous factors like ionizing radiation but also endogenous factors like Werner syndrome causing mutations in the WRN gene can influence age-associated changes in DNA methylation

    Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes

    No full text
    Werner Syndrome (WS) is an adult‐onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN‐mutant) or atypical WS (3 LMNA‐mutant and 3 POLD1‐mutant) patients and age‐ and sex‐matched controls. WS was not associated with either age‐related accelerated global losses of ALU, LINE1, and α‐satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN‐mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence‐specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS‐ and age‐related methylation changes exhibited a constant offset of methylation between WRN‐mutant patients and controls across the entire analyzed age range. WS‐specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes

    Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation

    No full text
    <div><p>Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response.</p></div

    Global DNA methylation in genic and intergenic regions of irradiated versus non-irradiated fibroblast cultures.

    No full text
    <p>DNA methylation was assessed with Illumina 450K arrays in primary human fibroblasts at 1–24 h after irradiation with 2 Gy (upper panel) and at 6–72 h after 4 Gy (lower panel). The bars represent the average methylation of all analyzed CpGs that have been annotated to a particular category (promoter, 5' UTR, first exon, gene body, 3' UTR, intergenic). TSS200 is the region from transcription start site (TSS) to -200 bp, TSS1500 from -200 bp to -1,500 bp upstream of TSS. Data are presented as means over means.</p

    Global DNA methylation and hydroxymethylation in irradiated versus non-irradiated fibroblast cultures.

    No full text
    <p>Global 5-mC and 5-hmC levels were measured by ELISA-based assays in primary human fibroblasts at 6 and 24 h after X-ray irradiation with 2 and 4 Gy, respectively. For each time point and dose, the number of analyzed cultures is given in parenthesis. Results are presented as mean (of different cultures) over means (triplicate measurements) ± standard error. Asterisk denotes a significant (p < 0.05) between-group difference.</p

    DNA methylation of repetitive elements in irradiated versus non-irradiated fibroblast cultures.

    No full text
    <p>Global methylation of interspersed ALU and LINE-1 repeats, and α-satellite DNA was determined by bisulfite pyrosequencing in primary human fibroblasts at 6 and 24 h after irradiation with 2 and 4 Gray, respectively. For each time point and dose, the number of analyzed cultures is given in parenthesis. Results are presented as mean (of different cultures) over means (triplicate measurements) ± standard error. Asterisk denotes a significant (p < 0.05) between-group difference.</p

    Box plots showing the distribution of repeat DNA methylation in single cells.

    No full text
    <p>DNA methylation of interspersed ALU and LINE-1 repeats, and α-satellite DNA was determined by bisulfite pyrosequencing in individual fibroblasts from two independent cultures at 24 h after irradiation with 2 Gy and 4 Gy, respectively. For each culture, time point, and dose, the number of analyzed cells is given in parenthesis. The median is represented by a horizontal line. The bottom of the box indicates the 25<sup>th</sup> percentile, the top the 75<sup>th</sup> percentile. Outliers are shown as circles and extreme outliers as stars.</p
    corecore