17 research outputs found

    Comparing the Effect of Naturally Restored Forest and Grassland on Carbon Sequestration and Its Vertical Distribution in the Chinese Loess Plateau

    Get PDF
    Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP) since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2) and restored grassland (RG-1 and RG-2) sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ13C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg−1 at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0–100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ13C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of 13C atmospheric CO2 values with the burning of fossil fuel since the Industrial Revolution) was minimal. The soil δ13C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ13C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP

    Distribuição Do Carbono Orgânico Nas Frações Do Solo Em Diferentes Ecossistemas Na Amazônia Central

    Get PDF
    Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM) was fractionated and soil C stocks were estimated in primary forest (PF), pasture (P), secondary succession (SS) and an agroforestry system (AFS). Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction), IALF (intra-aggregate light fraction), F-sand (sand fraction), F-clay (clay fraction) and F-silt (silt fraction). The 0-5 cm layer contains 60% of soil C, which is associated with the FLF. The F-clay was responsible for 70% of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS) > (98.4 Mg ha-1 of C - FP) > (92.9 Mg ha-1 of C - SS) > (64.0 Mg ha-1 of C - P). The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes. © 2015, Revista Brasileira de Ciencia do Solo. All rights reserved

    Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging

    No full text
    Object. the diagnosis of low-grade glioma (LGG) cannot be based exclusively on conventional magnetic resonance (MR) imaging studies, and target selection for stereotactic biopsy is a crucial issue given the high risk of sampling errors. the authors hypothesized that perfusion-weighted imaging could provide information on the microcirculation in presumed supratentorial LGGs.Methods. All adult patients with suspected (nonenhancing) supratentorial LGGs on conventional MR imaging between February 2001 and February 2004 were included in this study. Preoperative MR imaging was performed using a dynamic first-pass gadopentate dimeglumine-enhanced spin echo-echo planar perfusion-weighted sequence, and the tumors' relative cerebral blood volume (rCBV) measurements were expressed in relation to the values observed in contralateral white matter. in patients with heterogeneous tumors a stereotactic biopsy was performed in the higher perfusion areas before resection. Among 21 patients (16 men and five women with a mean age of 36 years, range 23-60 years), 10 had diffuse astrocytomas (World Health Organization Grade II) and 11 had other LGGs and anaplastic gliomas. On perfusion-weighted images demonstrating heterogeneous tumors, areas of higher rCBV focus were found to be oligodendrogliornas or anaplastic astrocytomas on stereotactic biopsy; during tumor resection, however, specimens were characterized predominantly as astrocytomas. Diffuse astrocytomas were associated with significantly lower mean rCBV values compared with those in the other two lesion groups (p < 0.01). the rCBV ratio cutoff value that permitted better discrimination between diffuse astrocytomas and the other lesion groups was 1.2 (80% sensitivity and 100% specificity).Conclusions. Perfusion-weighted imaging is a feasible method of reducing the sampling error in the histopathological diagnosis of a presumed LGG, particularly by improving the selection of targets for stereotactic biopsy.Universidade Federal de São Paulo, Ctr Med Diagnost Fleury, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Neurol, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Neurosurg, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Pathol, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Ctr Med Diagnost Fleury, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Neurol, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Neurosurg, BR-01333391 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Pathol, BR-01333391 São Paulo, SP, BrazilWeb of Scienc

    A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities

    No full text
    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha-1 year-1. The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha-1 year-1). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies
    corecore