3,064 research outputs found

    Dynamical Casimir effect with cylindrical waveguides

    Full text link
    I consider the quantum electromagnetic field in a coaxial cylindrical waveguide, such that the outer cylindrical surface has a time-dependent radius. The field propagates parallel to the axis, inside the annular region between the two cylindrical surfaces. When the mechanical frequency and the thickness of the annular region are small enough, only Transverse Electromagnetic (TEM) photons may be generated by the dynamical Casimir effect. The photon emission rate is calculated in this regime, and compared with the case of parallel plates in the limit of very short distances between the two cylindrical surfaces. The proximity force approximation holds for the transition matrix elements in this limit, but the emission rate scales quadratically with the mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Inertial forces in the Casimir effect with two moving plates

    Full text link
    We combine linear response theory and dimensional regularization in order to derive the dynamical Casimir force in the low frequency regime. We consider two parallel plates moving along the normal direction in DD-dimensional space. We assume the free-space values for the mass of each plate to be known, and obtain finite, separation-dependent mass corrections resulting from the combined effect of the two plates. The global mass correction is proportional to the static Casimir energy, in agreement with Einstein's law of equivalence between mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical Review

    WKB Propagation of Gaussian Wavepackets

    Full text link
    We analyze the semiclassical evolution of Gaussian wavepackets in chaotic systems. We prove that after some short time a Gaussian wavepacket becomes a primitive WKB state. From then on, the state can be propagated using the standard TDWKB scheme. Complex trajectories are not necessary to account for the long-time propagation. The Wigner function of the evolving state develops the structure of a classical filament plus quantum oscillations, with phase and amplitude being determined by geometric properties of a classical manifold.Comment: 4 pages, 4 figures; significant improvement

    Numerical approach to the dynamical Casimir effect

    Full text link
    The dynamical Casimir effect for a massless scalar field in 1+1-dimensions is studied numerically by solving a system of coupled first-order differential equations. The number of scalar particles created from vacuum is given by the solutions to this system which can be found by means of standard numerics. The formalism already used in a former work is derived in detail and is applied to resonant as well as off-resonant cavity oscillations.Comment: 15 pages, 4 figures, accepted for publication in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Parabolic dunes in north-eastern Brazil

    Full text link
    In this work we present measurements of vegetation cover over parabolic dunes with different degree of activation along the north-eastern Brazilian coast. We are able to extend the local values of the vegetation cover density to the whole dune by correlating measurements with the gray-scale levels of a high resolution satellite image of the dune field. The empirical vegetation distribution is finally used to validate the results of a recent continuous model of dune motion coupling sand erosion and vegetation growth.Comment: 18 pages, 14 figures, aubmitted to Geomorpholog

    The mathematical description of the electrosynthesis of composites of oxy-hydroxycompounds cobalt with polypyrrole overooxidazed

    Full text link
    The electrosynthesis of the composite with of the overoxidized polypyrrole with cobalt oxy-hydroxide in strongly acidic media has been described mathematically, using linear stability theory and bifurcation analysis. The steadystates stability conditions and oscillatory and monotonic instability requirements have been described too. The system´s behavior was compared with behavior of other systems with overoxidation, electropolymerization of heterocyclic compounds and electrosynthesis of the cobalt oxy-hydroxides

    Dynamical Casimir effect with Dirichlet and Neumann boundary conditions

    Full text link
    We derive the radiation pressure force on a non-relativistic moving plate in 1+1 dimensions. We assume that a massless scalar field satisfies either Dirichlet or Neumann boundary conditions (BC) at the instantaneous position of the plate. We show that when the state of the field is invariant under time translations, the results derived for Dirichlet and Neumann BC are equal. We discuss the force for a thermal field state as an example for this case. On the other hand, a coherent state introduces a phase reference, and the two types of BC lead to different results.Comment: 12 page

    Lateral Casimir-Polder force with corrugated surfaces

    Full text link
    We derive the lateral Casimir-Polder force on a ground state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two commonly used approximation methods. We show that the proximity force approximation (large corrugation wavelengths) overestimates the lateral force, while the pairwise summation approach underestimates it due to the non-additivity of dispersion forces. We argue that a frequency shift measurement for the dipolar lateral oscillations of cold atoms could provide a striking demonstration of nontrivial geometrical effects on the quantum vacuum.Comment: 12 pages, 6 figures, contribution to QFEXT07 proceeding
    corecore