35 research outputs found

    Repeated Influenza Vaccination Boosts and Maintains H1N1pdm09 Neuraminidase Antibody Titers

    Get PDF
    Antibodies to influenza surface protein neuraminidase (NA) have been found to reduce disease severity and may be an independent correlate of protection. Despite this, current influenza vaccines have no regulatory requirements for the quality or quantity of the NA antigen and are not optimized for induction of NA-specific antibodies. Here we investigate the induction and durability of NA-specific antibody titers after pandemic AS03-adjuvanted monovalent H1N1 vaccination and subsequent annual vaccination in health care workers in a five-year longitudinal study. NA-specific antibodies were measured by endpoint ELISA and functional antibodies measured by enzyme-linked lectin assay (ELLA) and plaque reduction naturalisation assay. We found robust induction of NA inhibition (NAI) titers with a 53% seroconversion rate (>4-fold) after pandemic vaccination in 2009. Furthermore, the endpoint and NAI geometric mean titers persisted above pre-vaccination levels up to five years after vaccination in HCWs that only received the pandemic vaccine, which demonstrates considerable durability. Vaccination with non-adjuvanted trivalent influenza vaccines (TIV) in subsequent influenza seasons 2010/2011 – 2013/2014 further boosted NA-specific antibody responses. We found that each subsequent vaccination increased durable endpoint titers and contributed to maintaining the durability of functional antibody titers. Although the trivalent influenza vaccines boosted NA-specific antibodies, the magnitude of fold-increase at day 21 declined with repeated vaccination, particularly for functional antibody titers. High levels of pre-existing antibodies were associated with lower fold-induction in repeatedly vaccinated HCWs. In summary, our results show that durable NA-specific antibody responses can be induced by an adjuvanted influenza vaccine, which can be maintained and further boosted by TIVs. Although NA-specific antibody responses are boosted by annual influenza vaccines, high pre-existing titers may negatively affect the magnitude of fold-increase in repeatedly vaccinated individuals. Our results support continued development and standardization of the NA antigen to supplement current influenza vaccines and reduce the burden of morbidity and mortality.publishedVersio

    Safety, Immunogenicity, Efficacy and Effectiveness of Inactivated Influenza Vaccines in Healthy Pregnant Women and Children Under 5 Years: An Evidence-Based Clinical Review

    Get PDF
    Annual influenza vaccination is often recommended for pregnant women and young children to reduce the risk of severe influenza. However, most studies investigating the safety, immunogenicity, and efficacy or effectiveness of influenza vaccines are conducted in healthy adults. In this evidence-based clinical review, we provide an update on the safety profile, immunogenicity, and efficacy/effectiveness of inactivated influenza vaccines (IIVs) in healthy pregnant women and children <5 years old. Six electronic databases were searched until May 27, 2021. We identified 3,731 articles, of which 93 met the eligibility criteria and were included. The IIVs were generally well tolerated in pregnant women and young children, with low frequencies of adverse events following IIV administration; however, continuous vaccine safety monitoring systems are necessary to detect rare adverse events. IIVs generated good antibody responses, and the seroprotection rates after IIVs were moderate to high in pregnant women (range = 65%–96%) and young children (range = 50%–100%), varying between the different influenza types/subtypes and seasons. Studies show vaccine efficacy/effectiveness values of 50%–70% in pregnant women and 20%–90% in young children against lab-confirmed influenza, although the efficacy/effectiveness depended on the study design, host factors, vaccine type, manufacturing practices, and the antigenic match/mismatch between the influenza vaccine strains and the circulating strains. Current evidence suggests that the benefits of IIVs far outweigh the potential risks and that IIVs should be recommended for pregnant women and young children.publishedVersio

    Persistently high antibody responses after AS03-adjuvanted H1N1pdm09 vaccine: Dissecting the HA specific antibody response

    Get PDF
    Current influenza vaccines have a suboptimal effectiveness. The introduction of a novel A/H1N1 influenza virus in 2009 (H1N1pdm09) provided a unique opportunity to study the humoral response to the AS03-adjuvanted H1N1pdm09 vaccine and repeated annual vaccination with the homologous virus in subsequent influenza seasons. Thirty-two HCWs immunized with the AS03-adjuvanted H1N1pdm09 vaccine in 2009 were divided into four groups based on the longevity of their antibody responses (persistently high or transient), and whether they were repeatedly annually vaccinated in the subsequent four influenza seasons or not. Serological assays were utilized to measure the quantity, quality and functionality of antibodies targeting the major surface glycoprotein hemagglutinin (HA). Persistent high responders (hemagglutination inhibition (HI) titre ≥ 80 at 12 months after H1N1pdm09 vaccination) had protective levels of HI antibodies throughout the study period. In addition, the quality and functionality of these antibodies were greater than the individuals who had a transient antibody response to the pandemic vaccine (HI titre < 40 at 12 months after H1N1pdm09 vaccination). All groups had similar levels of antibodies towards the conserved HA stalk domain. The level of HA head-specific antibodies gradually increased over time with annual vaccination in the transient responders. The AS03-adjuvanted H1N1pdm09 vaccine elicited a robust humoral response that persisted up to 5 years in some individuals. Seasonal annual vaccination boosted the HA-antibodies over time in individuals with a transient response to the pandemic H1N1pdm09 vaccine.publishedVersio

    Functional and Binding H1N1pdm09-Specific Antibody Responses in Occasionally and Repeatedly Vaccinated Healthcare Workers: A Five-Year Study (2009-2014)

    Get PDF
    Background: In 2009, a novel influenza A/H1N1pdm09 emerged and caused a pandemic. This strain continued to circulate and was therefore included in the seasonal vaccines up to the 2016/2017-season. This provided a unique opportunity to study the long-term antibody responses to H1N1pdm09 in healthcare workers (HCW) with a different vaccination history. Methods: HCW at Haukeland University Hospital, Bergen, Norway were immunized with the AS03-adjuvanted H1N1pdm09 vaccine in 2009 (N=55) and divided into groups according to their vaccination history; one vaccination (N=10), two vaccinations (N=15), three vaccinations (N=5), four vaccinations (N=15) and five vaccinations (N=10). HCW are recommended for influenza vaccination to protect both themselves and their patients, but it is voluntary in Norway. Blood samples were collected pre- and at 21 days, 3, 6, and 12 months after each vaccination, or annually from 2010 HCW without vaccination. ELISA, haemagglutination inhibition (HI) and microneutralization (MN) assays were used to determine the antibody response. Results: Pandemic vaccination induced a significant increase in the H1N1-specific antibodies measured by ELISA, HI and MN. Seasonal vaccination boosted the antibody response, both in HCW with only the current vaccination and those with prior and current vaccination during 2010/11-2013/14. We observed a trend of increased antibody responses in HCW with only the current vaccination in 2013/14. A two- and three-year gap before vaccination in 2013/14 provided a more potent antibody response compared to annually vaccinated HCW. Conclusions: Our long term follow up study elucidates the antibody response in HCW with different vaccination histories. Our findings contribute to our understanding of the impact of repeated vaccination upon antibody responses.publishedVersio

    Attack rates amongst household members of outpatients with confirmed COVID-19 in Bergen, Norway: A case-ascertained study

    Get PDF
    Background Households studies reflect the natural spread of SARS-CoV-2 in immunologically naive populations with limited preventive measures to control transmission. We hypothesise that seropositivity provides more accurate household attack rates than RT-PCR. Here, we investigated the importance of age in household transmission dynamics. Methods We enroled 112 households (291 participants) in a case-ascertained study in Bergen, Norway from 28th February to 4th April 2020, collecting demographic and clinical data from index patients and household members. SARS-CoV-2-specific antibodies were measured in sera collected 6–8 weeks after index patient nasopharyngeal testing to define household attack rates. Findings The overall attack rate was 45% (95% CI 38–53) assessed by serology, and 47% when also including seronegative RT-PCR positives. Serology identified a higher number of infected household members than RT-PCR. Attack rates were equally high in children (48%) and young adults (42%). The attack rate was 16% in asymptomatic household members and 42% in RT-PCR negative contacts. Older adults had higher antibody titres than younger adults. The risk of household transmission was higher when the index patient had fever (aOR 3.31 [95% CI 1.52–7.24]; p = 0.003) or dyspnoea (aOR 2.25 [95% CI 1.80–4.62]; p = 0.027) during acute illness. Interpretation Serological assays provide more sensitive and robust estimates of household attack rates than RT-PCR. Children are equally susceptible to infection as young adults. Negative RT-PCR or lack of symptoms are not sufficient to rule out infection in household members.publishedVersio

    Risk assessment and antibody responses to SARS-CoV-2 in healthcare workers

    Get PDF
    Background: Preventing infection in healthcare workers (HCWs) is crucial for protecting healthcare systems during the COVID-19 pandemic. Here, we investigated the seroepidemiology of SARS-CoV-2 in HCWs in Norway with low-transmission settings. Methods: From March 2020, we recruited HCWs at four medical centres. We determined infection by SARS-CoV-2 RT-PCR and serological testing and evaluated the association between infection and exposure variables, comparing our findings with global data in a meta-analysis. Anti-spike IgG antibodies were measured after infection and/or vaccination in a longitudinal cohort until June 2021. Results: We identified a prevalence of 10.5% (95% confidence interval, CI: 8.8–12.3) in 2020 and an incidence rate of 15.0 cases per 100 person-years (95% CI: 12.5–17.8) among 1,214 HCWs with 848 person-years of follow-up time. Following infection, HCWs (n = 63) mounted durable anti-spike IgG antibodies with a half-life of 4.3 months since their seropositivity. HCWs infected with SARS-CoV-2 in 2020 (n = 46) had higher anti-spike IgG titres than naive HCWs (n = 186) throughout the 5 months after vaccination with BNT162b2 and/or ChAdOx1-S COVID-19 vaccines in 2021. In a meta-analysis including 20 studies, the odds ratio (OR) for SARS-CoV-2 seropositivity was significantly higher with household contact (OR 12.6; 95% CI: 4.5–35.1) and occupational exposure (OR 2.2; 95% CI: 1.4–3.2). Conclusion: We found high and modest risks of SARS-CoV-2 infection with household and occupational exposure, respectively, in HCWs, suggesting the need to strengthen infection prevention strategies within households and medical centres. Infection generated long-lasting antibodies in most HCWs; therefore, we support delaying COVID-19 vaccination in primed HCWs, prioritising the non-infected high-risk HCWs amid vaccine shortage.publishedVersio

    The Performances of Three Commercially Available Assays for the Detection of SARS‐CoV‐2 Antibodies at Different Time Points Following SARS‐CoV‐2 Infection

    Get PDF
    The aim of this study was to evaluate the performances of three commercially available antibody assays for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies at different time points following SARS-CoV-2 infection. Sera from 536 cases, including 207 SARS-CoV-2 PCR positive, were tested for SARS-CoV-2 antibodies with the Wantai receptor binding domain (RBD) total antibody assay, Liaison S1/S2 IgG assay and Alinity i nucleocapsid IgG assay and compared to a two-step reference ELISA (SARS-CoV-2 RBD IgG and SARS-CoV-2 spike IgG). Diagnostic sensitivity, specificity, predictive values and Cohen’s kappa were calculated for the commercial assays. The assay’s sensitivities varied greatly, from 68.7% to 95.3%, but the specificities remained high (96.9%–99.1%). The three tests showed good performances in sera sampled 31 to 60 days after PCR positivity compared to the reference ELISA. The total antibody test performed better than the IgG tests the first 30 days and the nucleocapsid IgG test showed reduced sensitivity two months or more after PCR positivity. Hence, the test performances at different time points should be taken into consideration in clinical practice and epidemiological studies. Spike or RBD IgG tests are preferable in sera sampled more than two months following SARS-CoV-2 infection.publishedVersio

    Live attenuated influenza vaccine in children induces b-cell responses in tonsils

    Get PDF
    Background. Tonsils play a key role in eliciting immune responses against respiratory pathogens. Little is known about how tonsils contribute to the local immune response after intranasal vaccination. Here, we uniquely report the mucosal humoral responses in tonsils and saliva after intranasal live attenuated influenza vaccine (LAIV) vaccination in children. Methods. Blood, saliva, and tonsils samples were collected from 39 children before and after LAIV vaccination and from 16 agematched, nonvaccinated controls. Serum antibody responses were determined by a hemagglutination inhibition (HI) assay. The salivary immunoglobulin A (IgA) level was measured by an enzyme-linked immunosorbent assay. Antibody-secreting cell (ASC) and memory B-cell (MBC) responses were enumerated in tonsils and blood. Results. Significant increases were observed in levels of serum antibodies and salivary IgA to influenza A(H3N2) and influenza B virus strains as early as 14 days after vaccination but not to influenza A(H1N1). Influenza virus-specific salivary IgA levels correlated with serum HI responses, making this a new possible indicator of vaccine immunogenicity in children. LAIV augmented influenza virus-specific B-cell responses in tonsils and blood. Tonsillar MBC responses correlated with systemic MBC and serological responses. Naive children showed significant increases in MBC counts after LAIV vaccination. Conclusions. This is the first study to demonstrate that LAIV elicits humoral B-cell responses in tonsils of young children. Furthermore, salivary IgA analysis represents an easy method for measuring immunogenicity after vaccination

    A rapid antibody screening haemagglutination test for predicting immunity to SARS-CoV-2 variants of concern

    Get PDF
    Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80–99 years, n = 89) and younger adults (23–77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1–89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72–0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72–76%) older adults respond after two vaccinations to alpha and delta, but only 58–62% to beta and gamma, compared to 96–97% of younger vaccinees and 68–76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.publishedVersio

    SARS-CoV-2 specific immune responses in overweight and obese COVID-19 patients

    Get PDF
    Obesity is a known risk factor for severe respiratory tract infections. In this prospective study, we assessed the impact of being obese or overweight on longitudinal SARS-CoV-2 humoral and cellular responses up to 18 months after infection. 274 patients provided blood samples at regular time intervals up to 18 months including obese (BMI ≥30, n=32), overweight (BMI 25-29.9, n=103) and normal body weight (BMI 18.5-24.9, n=134) SARS-CoV-2 patients. We determined SARS-CoV-2 spike-specific IgG, IgA, IgM levels by ELISA and neutralising antibody titres by neutralisation assay. RBD- and spike-specific memory B cells were investigated by ELISpot, spike- and non-spike-specific IFN-γ, IL-2 and IFN-γ/IL-2 secreting T cells by FluoroSpot and T cell receptor (TCR) sequencing was performed. Higher BMI correlated with increased COVID-19 severity. Humoral and cellular responses were stronger in overweight and obese patients than normal weight patients and associated with higher spike-specific IgG binding titres relative to neutralising antibody titres. Linear regression models demonstrated that BMI, age and COVID-19 severity correlated independently with higher SARS-CoV-2 immune responses. We found an increased proportion of unique SARS-CoV-2 specific T cell clonotypes after infection in overweight and obese patients. COVID-19 vaccination boosted humoral and cellular responses irrespective of BMI, although stronger immune boosting was observed in normal weight patients. Overall, our results highlight more severe disease and an over-reactivity of the immune system in overweight and obese patients after SARS-CoV-2 infection, underscoring the importance of recognizing overweight/obese individuals as a risk group for prioritisation for COVID-19 vaccination
    corecore