411 research outputs found

    The acquisition of Setswana phonology in children aged 3;0 – 6;0 years : a cross-sectional study

    Get PDF
    Includes bibliographical references.This study aimed to describe the typical development of speech in first language Setswana speaking children. Thirty-six children, aged 3;0 – 6;0 years, attending preschools in Hebron in the North-West Province of South Africa, participated in the study. The objectives of the study were documenting the children’s ability to produce consonants and vowels, different syllable structures, as well as the nature of phonological processes occurring at various ages. The study followed a cross-sectional design with six children grouped into each six month age band. Due to the preliminary and exploratory nature of the project, an assessment tool was developed and used to document speech development in Setswana-speaking children. This was done as none is currently available. Words and pictures selected for this assessment tool were culturally and linguistically appropriate for the study population, and an expert panel was used to ensure this. Assessments were transcribed online by a first language Setswana speaker using the IPA convention and were audio-recorded and re-transcribed by the same Setswana speaker to ensure reliability. Findings of this study indicate that the majority of Setswana consonants are acquired by 3;0 years. The rounded alveolar trill /rw/ is among the phonemes which continue to develop after 6;0 years, particularly in the penultimate syllable. Phonological processes found in the speech of younger children mainly occur in multisyllabic words and include deletion of marked and unmarked syllables, gliding of liquids, assimilation, as well as the simplification of -Cw- digraphs and words with five syllables. Older children (5;6 – 5;11 years) present with fewer phonological processes than the younger group of children (3;0 – 5;5 years). Findings of the study are discussed in relation to normative data from other languages, and in particular to those belonging to the same language group such as Sesotho. Knowledge of Setswana speech development will better equip Speech-Language Therapists working in Southern Africa to assess and manage speech difficulties in Setswana-speaking children. Future research may focus on developing a standardised Setswana speech assessment tool. The results contribute to an increasing body of locally relevant information about the typical development of children’s speech

    Assessment of possible airborne impact from risk sites: methodology for probabilistic atmospheric studies

    Get PDF
    The main purpose of this study is to develop a methodology for a multidisciplinary nuclear risk and vulnerability assessment, and to test this methodology through estimation of a nuclear risk to population in the Northern European countries in case of a severe accident at the nuclear risk sites. For assessment of the probabilistic risk and vulnerability, a combination of social-geophysical factors and probabilities are considered. <P style='line-height: 20px;'> The main focus of this paper is the description of methodology for evaluation of the atmospheric transport of radioactive releases from the risk site regions based on the long-term trajectory modeling. The suggested methodology is given from the probabilistic point of view. The main questions stated are: What are probabilities and times for radionuclide atmospheric transport to different neighbouring countries and territories in case of the hypothetical accidental release at the nuclear risk site? Which geographical territories or countries are at the highest risk from the hypothetical accidental releases? <P style='line-height: 20px;'> To answer these questions we suggest applying the following research tools for probabilistic atmospheric studies. First tool is atmospheric modelling to calculate multiyear forward trajectories originated over the sites. Second tool is statistical analyses to explore temporal and spatial structure of calculated trajectories and evaluate different probabilistic impact indicators: atmospheric transport pathways, airflow, fast transport, typical transport time, maximum possible impact zone, maximum reaching distance, etc. These indicators are applicable for further GIS-analysis and integration to estimate regional risk and vulnerability in case of accidental releases at the risk sites and for planning the emergency response and preparedness systems

    ASSESSMENT OF STARTERS WRITING: CASE STUDY ON FIRST GRADE DEAF STUDENTS AT STATE ELEMENTARY SCHOOL FOR EXCEPTIONAL CHILDREN OF KENDALREJO, EAST JAVA, INDONESIA

    Get PDF
    Starters writing assessment is a systematic process by using appropriate instruments in order to determine learning behavior, placement, and learning in starters writing. Therefore, certain difficulties could be detected early. This study aims to conduct initial assessment to find deaf students with barriers in starters writing at State Elementary School for Exceptional Children of Kendalrejo, Talun, Blitar. The study is qualitative descriptive with 6 deaf students of 1st grade as samples. Data collection procedures of the study are in-depth interview with teacher by using structured interview guide, classroom observation, individual assessment analysis and documentation. The data are then verified and analyzed through theoretical interpretation to identify the barriers, needs, and recommendations in treating each student based on the writing process. Study results of the starters assessment show that there is a deaf student who has problem in eye-hand coordination and fine motoric. At last, the study offers solutions of needs and recommendations on writing skills through the fine motoric practice needs, training the students to continue writing, involving the students gradually, choosing the strategies that fit their difficulty level in the writing tasks, building confidence of the students, and arranging parenting class by the school

    Assessment of possible airborne impact from risk sites: methodology for probabilistic atmospheric studies

    No full text
    International audienceThe main purpose of this study is to develop a methodology for a multidisciplinary nuclear risk and vulnerability assessment, and to test this methodology through estimation of a nuclear risk to population in the Northern European countries in case of a severe accident at the nuclear risk sites. For assessment of the probabilistic risk and vulnerability, a combination of social-geophysical factors and probabilities are considered. The main focus of this paper is the description of methodology for evaluation of the atmospheric transport of radioactive releases from the risk site regions based on the long-term trajectory modeling. The suggested methodology is given from the probabilistic point of view. The main questions stated are: What are probabilities and times for radionuclide atmospheric transport to different neighbouring countries and territories in case of the hypothetical accidental release at the nuclear risk site? Which geographical territories or countries are at the highest risk from the hypothetical accidental releases? To answer these questions we suggest applying the following research tools for probabilistic atmospheric studies. First tool is atmospheric modelling to calculate multiyear forward trajectories originated over the sites. Second tool is statistical analyses to explore temporal and spatial structure of calculated trajectories and evaluate different probabilistic impact indicators: atmospheric transport pathways, airflow, fast transport, typical transport time, maximum possible impact zone, maximum reaching distance, etc. These indicators are applicable for further GIS-analysis and integration to estimate regional risk and vulnerability in case of accidental releases at the risk sites and for planning the emergency response and preparedness systems

    Assessment of possible airborne impact from nuclear risk sites ? Part II: probabilistic analysis of atmospheric transport patterns in Euro-Arctic region

    No full text
    International audienceThe probabilistic analysis of atmospheric transport patterns from most important nuclear risk sites in the Euro-Arctic region is performed employing the methodology developed within the "Arctic Risk" Project of the NARP Programme (Baklanov and Mahura, 2003). The risk sites are the nuclear power plants in the Northwest Russia, Finland, Sweden, Lithuania, United Kingdom, and Germany as well as the Novaya Zemlya test site of Russia. The geographical regions of interest are the Northern and Central European countries and Northwest Russia. In this study, the employed research tools are the trajectory model to calculate a multiyear dataset of forward trajectories that originated over the risk site locations, and a set of statistical methods (including exploratory, cluster, and probability fields analyses) for analysis of trajectory modelling results. The probabilistic analyses of trajectory modelling results for eleven sites are presented as a set of various indicators of the risk sites possible impact on geographical regions and countries of interest. The nuclear risk site possible impact (on a particular geographical region, territory, country, site, etc.) due to atmospheric transport from the site after hypothetical accidental release of radioactivity can be properly estimated based on a combined interpretation of the indicators (simple characteristics, atmospheric transport pathways, airflow and fast transport probability fields, maximum reaching distance and maximum possible impact zone, typical transport time and precipitation factor fields) for different time periods (annual, seasonal, and monthly) for any selected site (both separately for each site or grouped for several sites) in the Euro-Arctic region. Such estimation could be the useful input information for the decision-making process, risk assessment, and planning of emergency response systems for sites of nuclear, chemical, and biological danger

    Assessment of possible airborne impact from nuclear risk sites ? Part I: methodology for probabilistic atmospheric studies

    No full text
    International audienceThe main purpose of this study is to develop a methodology for a multidisciplinary nuclear risk and vulnerability assessment, and to test this methodology through estimation of a nuclear risk to population in the Northern European countries in case of a severe accident at the nuclear risk sites. For assessment of the probabilistic risk and vulnerability, a combination of social-geophysical factors and probabilities are considered. The main focus of this paper is the description of methodology for evaluation of the atmospheric transport of radioactive releases from the risk site regions. The suggested methodology is given from the probabilistic point of view. The main questions stated are: What are probabilities and times for radionuclide atmospheric transport to different neighbouring countries and territories in case of the hypothetical accidental release at the nuclear risk site? Which geographical territories or countries are at the highest risk from the hypothetical accidental releases? To answer this question we suggest applying the following research tools for probabilistic atmospheric studies. First, it is atmospheric modelling to calculate multiyear forward trajectories originated over the sites. Second, it is statistical analysis tools to explore temporal and spatial structure of calculated trajectories in order to evaluate different probabilistic impact indicators: atmospheric transport pathways, airflow, fast transport, typical transport time, maximum possible impact zone, maximum reaching distance, etc. These indicators are applicable for further GIS-analysis and integration to estimate regional risk and vulnerability in case of accidental releases at the risk sites and for planning the emergency response and preparedness systems

    Methodology for prediction and estimation of consequences of possible atmospheric releases of hazardous matter: "Kursk" submarine study

    No full text
    International audienceThere are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.). Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1) probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2) forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second ? during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning) of the "Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs) showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release are performed. The analysis showed that the possible deposition fractions of 1011 over the Kola Peninsula, and 10?12 ? 10?13 for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature

    Assessment of Impact of Russian Nuclear Fleet Operations on Russian Far Eastern Coastal Regions

    Get PDF
    The main purpose of this study is evaluation of the atmospheric transport of pollutants from the Vladivostok and Kamchatka nuclear risk sites (NRSs) - nuclear submarines and radioactive storage facilities -- located at the Russian Far East. The evaluation is given from the probabilistic point of view. The main question is: What is the probability for a radionuclide atmospheric transport to the neighboring countries in the case of an accident at the nuclear risk sites in the Russian Far East? To answer this question, we applied two research tools. The first tool is the isentropic atmospheric trajectory model to calculate trajectories originating at two NRSs. The second tool is the statistical analyses - exploratory, cluster, and probability field analyses -- to explore the structure of the calculated trajectory data sets seasonally, monthly, and year-to-year. The selected regions of potential impact due to atmospheric transport -- Japan, China, North and South Koreas, State of Alaska, and Aleutian Chain Islands. Additionally, we discussed possible approaches to investigate impacts of the radionuclide removal processes during atmospheric transport. The main findings of these study are: (1) For both NRSs: -- The westerly flow is dominant throughout the year in the boundary layer (more than 60% of the time). At altitudes of the free troposphere, the probability of transport from the west increases up to 85% of the time. -- The relatively rapid westerly flow toward the North America reaches maximum occurrence during fall-winter (8-11% of the time) and during winter-spring (12-13% of the time) for the Kamchatka and Vladivistok NRSSs, respectively. (2) For the Vladivostok NRS: -- The North China and North Japan regions are the highest risk of possible impact in comparison. The lower (and upper) bounds of the Vladivostok NRS's possible impact are about of 32 (54) and 35 (87)% for the North China and North Japan regions, respectively. -- On average, atmospheric transport to these regions could occur in 0.5 and 1.6 days, respectively. The fast transport events (i.e. in less than 1 day) could represent major concerns for the Japanese and North Korean regions, but these are not common for the US territories. -- Except for the US territories, the boundary layer transport reaches all considered regions more than half of time. (3) For the Kamchatka NRSs: -- The US territories are at the highest risk compared to the rest of the regions. The lower (and upper) bounds of the Kamchatka NRS's possible impact are 30 (54) and 13.4 (32.1)% for the Aleutian Chain Islands and the State of Alaska, respectively. -- On average, atmospheric transport to these regions could occur in 3.0 and 5.1 days, respectively. The free troposphere transport dominates in the Chinese and North Korean regions, but boundary layer transport dominates in other considered regions. We believe that results of the study are applicable for the emergency response and preparedness measures in cases of accidental releases at NRSs. Several directions for applicability of results in the studies of the consequences for population and environment, risk and vulnerability analysis, social and economical aspects resulting from the accidental releases at the nuclear risk sites as well as recommendations for the future studies are discussed

    The study of thermophysical and excess thermodynamic properties for the binary mixtures of imidazolium-based ionic liquids with polyethylene glycol 200.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in the PDF

    Analysis of the Dose Commitments Resulting from Atmospheric Transport and Deposition from Nuclear Risk Sites in the Russian Far East

    Get PDF
    The purpose of this study was to estimate the worst-case case dose commitments and potential consequences of accidental releases at nuclear risk sites in the Russian Far East. The nuclear risk sites of concern are near Petropavlovsk (52055'N & 158030'E) and Vladivostok (42055'N & 132025'E). The region of interest includes the territories of the Russian Far East, China, Japan, North and South Korea, State of Alaska, the Aleutian Islands, Mongolia, Burma, Hong Kong, Laos, Taiwan, Thailand, and Vietnam. The transboundary region (i.e., that outside of Russia) is of primary interest because the largest doses resulting from hypothetical releases from these sites would reside in Russia and would be examined using site specific information and detailed models that were unavailable for this study. However, the transboundary region can be examined, in general, using existing information and models. The The methodology from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1993 Report was used in this study to estimate effective dose commitments. It is recognized that this methodology is not the only acceptable manner to estimate such doses; the methodology was selected because it is independent, defensible, and, because it is based upon a multiplicative model, lends itself to a facile examination of parameter variation. The research tool used to generate the deposition data used as the basis of this study was a long-range transport model - the Danish Emergency Response Model of the Atmosphere (DERMA) which was used to simulate the 5-d atmospheric transport, dispersion and deposition of Cs-137 for a one-day release at a rate of 10Bq s-1 for a total "unit hypothetical release" of 8.64x10 14 Bq. The meteorological data from the European Center for Medium- Range Weather Forecasts (ECMWF, Reading, UK) based on the ECMWF global model forecast and analysis were used as input data for the model simulation. Using the DERMA model, the total Cs-137 depositions (i.e., sums of pertinent dry and wet deposition values) were computed for over 90% of the days in calendar year 2000. The necessary meteorological data was missing for the remaining days. In this report, Sr-90 and I-131 were radionuclides that might also have been of concern depending upon the conditions of the study. However, because of a lack of time and resources, the deposition values were not computed for these radionuclides for all calendar year 2000 days. There were Sr-90 and I-131 concentration and deposition data provided for selected days that were considered representative of the variation of the climactic condtions for the region for the year 2000. These data were used to generate simple, linear linear relationships between the unavailable Sr-90 and I-131 concentration and deposition data and the corresponding Cs-137 data. These relationships were found to be sufficiently accurate for the general examination undertaken in this report and were used to generate the necessary, unavailable data. From an examination of the appropriate source term information and deposition to dose transfer factors from both the UNSCEAR 1993 Report and the worst-case scenario, Cs-137 was determined to be the radionuclide of primary concern for this study. The Cs-137 deposition- to-dose transfer factor was dominated by the external exposure (to ground deposition) pathway. For the Petropavlovsk nuclear risk site, the maximum Cs-137 total deposition (locates in Russia) translated into a worst-case maximum effective dose commitment of 108 mSv per person for the maximum exposed individual (i.e., teen). For the transboundary region (i.e., that area outside of Russia), the maximum effective dose commitment was 5.0 mSv per teen. This maximum value was located in the State of Alaska; the maximum effective dose commitment for the Aleutian Islands was 3.3 mSv per teen. The maximum effective dose commitments in the effected U.S. territories were generally three to four times higher than those in Japan, the transboundary country with the next highest maximum dose commitments resulting from accidental releases from the Petropavlovsk risk site. For the Vladivostok nuclear risk site, the maximum Cs-137 137 total deposition (located again in Russia) translated into a worst-case maximum effective dose commitment of 102 mSv per teen. For the transboundary region, the maximum effective dose commitment for Cs-137 was 27 mSv per teen. These maximum values were located in China, which is proximate to the Vladivostok site. The maximum effective dose commitments for Japan and N. Korea are approximately the same (i.e., within a factor of two) as that for China. Note that the maximum effective dose commitments in the U.S. territories are generally more than a factor of 60 lower than those in China, the transboundary country with the highest maximum dose commitments resulting from accidental releases from the Vladivostok risk site. The maximum worst-case dose commitments corresponding to the potential Petropavlovsk and Vladivostok releases for both the regional and transboundary conditions were also compared to various annual reference levels (i.e., 0.15, 1.0, 10, and 100 mSv per person) discussed in the International Commission on Radiological Protection (ICRP) 82 Report pertaining to practices and interventions and the annual background radiation dose (i.e., 2.4 mSv per person) provided in the UNSCEAR 1993 Report. These comparisons were conservative because the effective dose commitments computed in this report are being compared to annual reference values and background doses. The worst-case maximum dose commitments from the Petropavlovsk site for the transboundary region on over 99% of all year 2000 days studied are less than the average annual background radiation dose. For the Vladivostok releases, the worst-case maximum dose commitments are less than the average annual background radiation dose for more than 44% of all year 2000 days studied. Furthermore, the maximum dose commitments corresponding to the Vladivostok releases for more than 90% of the year 2000 days studied are less than the annual 10 mSv per person level in which interventions are rarely justified and are all less than the annual 100 mSv per person level in which interventions are almost always justifiable according to ICRP 82. Therefore, the impacts from the adjusted Vladivostok releases would be, in general, more significant than those from Petropavlovsk (even though the Petropavlovsk releases translate into the maximum, worst-case dose commitment). The more significant impacts of the potential Vladivostok releases were compounded by the fact that many more people were impacted than from the corresponding hypothetical Petropavlovsk releases. However, the dose commitments from the potential Vladivostok releases could be considered negligible when compared to the 10 mSv per person level in which interventions are rarely justified. The maximum collective dose commitments corresponding to the worst-case dose commitments were also computed. The results indicate that even though the maximum effective dose commitments from the Petropavlovsk and Vladivostok releases were similar, the larger populations impacted by the Vladivostok releases generally resulted in significantly larger collective dose commitments and thus potential mortalities than those for the Petropavlovsk releases. For example, the maximum number of additional mortalities on a regional basis resulting from the worst-case Petropavlovsk scenario would be 355 with as many as 329 in Japan, 83 in China, 18 in the State of Alaska, and 10 in S. Korea. However, for the Vladivostok releases, there could be as many as 9771 additional mortalities on a regional basis, and the additional mortalities for Japan, China, N. Korea, S. Korea, Russia, and Taiwan would be 9501, 8575, 2485, 2436, 1614, and 318, respectively. The U.S. territories and Hong Kong might have an additional two mortalities each. However, even though these mortality numbers may appear large, it should be noted that none of the transboundary values exceed 9 mortalities per 100 000 persons, which is found in N. Korea resulting from the worst-case Vladivostok scenario. Because the aggregation of doses over large areas is contrary to the recommendation of the ICRP, a series of threshold values were imposed on the worst-case results to determine whether the conclusions would change dramatically. The impact on the maximum worst-case collective dose commitments for the Petropavlovsk releases would be significan. For example, if a threshold of 1 mSv per person is imposed on the collective dose computation, then the collective dose commitment for all transboundary areas except for the U.S. territories falls to zero (and this includes Japan, which had the largest collective dose commitment). However, the impact of imposing such thresholds on the collective dose commitments from the Vladivostok releases was much less profound than that for the corresponding Petropavlovsk dose commitments; in fact, the imposition of thresholds up to 1 mSv per person had little impact on the collective dose commitments for most countries in the region of interest. Even though the impact on the collective doses related to the Vladivostok releases was small, it remains true that the worst-case impacts of the effective dose commitments for the releases from both the Vladivostok and Petropavlovsk sites were negligible when compared to metrics such as the average annual background dose and other causes of death in the affected countries
    • …
    corecore