5 research outputs found

    Impact of the citizen science project COLLECT on ocean literacy and well-being within a north/west African and south-east Asian context

    Get PDF
    Plastic pollution is both a societal and environmental problem and citizen science has shown to be a useful tool to engage both the public and professionals in addressing it. However, knowledge on the educational and behavioral impacts of citizen science projects focusing on marine litter remains limited. Our preregistered study investigates the impact of the citizen science project Citizen Observation of Local Litter in coastal ECosysTems (COLLECT) on the participants' ocean literacy, pro-environmental intentions and attitudes, well-being, and nature connectedness, using a pretest-posttest design. A total of 410 secondary school students from seven countries, in Africa (Benin, Cabo Verde, Cote d'Ivoire, Ghana, Morocco, Nigeria) and Asia (Malaysia) were trained to sample plastics on sandy beaches and to analyze their collection in the classroom. Non-parametric statistical tests (n = 239 matched participants) demonstrate that the COLLECT project positively impacted ocean literacy (i.e., awareness and knowledge of marine litter, self-reported litter-reducing behaviors, attitudes towards beach litter removal). The COLLECT project also led to higher pro-environmental behavioral intentions for students in Benin and Ghana (implying a positive spillover effect) and higher well-being and nature connectedness for students in Benin. Results are interpreted in consideration of a high baseline in awareness and attitudes towards marine litter, a low internal consistency of pro-environmental attitudes, the cultural context of the participating countries, and the unique settings of the project's implementation. Our study highlights the benefits and challenges of understanding how citizen science impacts the perceptions and behaviors towards marine litter in youth from the respective regions.info:eu-repo/semantics/publishedVersio

    A record of change in oyster environment through high-resolution geochemical analysis of Late-Holocene sediments from Coastal Ghana

    No full text
    The near-coast environments where oysters occur are among the most impacted by humans globally, especially during the Late-Holocene. Yet, in West Africa, there is no documented historical record of change in these environments. We provide insight into the changing geochemical conditions of two oyster environments through high-resolution analysis of total organic carbon (C), total nitrogen (N), carbon and nitrogen isotope ratios (δ13C, δ15N), and trace elements, in two cores retrieved from the Densu estuary and the Anyanui (Keta) Creek in Ghana. Drastic shifts in sedimentation rate occurred in the Keta and Densu cores around 1996 CE and 960 CE respectively. At these times, comparatively, low levels of C and N were found in the Densu core. Increasing C and N levels and decreasing δ13C upcore aligned with the observed shift in sedimentation rate in the Keta core. The C/N ratios in the Keta core suggest allochthonous organic matter (OM) dominance in the creek. The Densu core showed periodic changes in C/N ratios from very high values (>20) between 1918 BCE and 1321 BCE, to values between 20 and 11 between 1321 BCE and 1977 CE and below 10 from the late 1970s CE to the present day, suggesting a varying degree of transformation in the catchment basin. Extremely high Sulfur (S) and moderate to significant Iron (Fe) increases suggest reducing conditions in the Keta sediments. Moderate Calcium (Ca), Zinc (Zn), and Strontium (Sr) concentrations in the upper part of the Densu core suggest a stronger influence of marine processes in the Densu in recent times. The findings reflect the impacts of catchment basin modification on the health of the two coastal environments, likely to impact the growth, productivity, and sustainability of the fishery of the West African mangrove Oyster

    Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea

    No full text
    Heavy metal pollution of the marine environment has toxic implications for both the aquatic biota and human health. We examined the levels of Zinc (Zn), Lead (Pb), Copper (Cu), Cadmium (Cd), Arsenic (As) and Mercury (Hg) in muscles of Sardinella maderensis, Dentex angolensis, Sphyraena sphyraena and Penaeus notialis caught from the coastal waters of Ghana using inductively coupled plasma mass spectrometry method. Penaeus notialis recorded the highest concentrations of all the metals (Cu:12.08 ± 1.46 µg/g, Zn: 19.20 ± 2.27 µg/g, As: 8.46 ± 2.42 µg/g, and Cd: 0.03 ± 0.01 µg/g) except Hg. Mercury was relatively high in D. angolensis (0.14 ± 0.03 µg/g). Apart from As, all metals were within globally permissible daily limits for consumption by human per meal. The estimated Target Hazard Quotient due to the intake of Hg through D. angolensis consumption exceeded the threshold value across all age categories. Carcinogenic risks due to As intake through P. notialis consumption far exceeded the 10−6 threshold for all age groups in Ghana. It is recommended that the consumption of these fish species particularly, the shrimp P. notialis be done cautiously to avoid possible future health challenges

    Colocando o treinamento em prática: um programa de monitoramento global da rede de ex-alunos

    No full text
    The ocean benefits humankind by producing half of the global oxygen supply, absorbing a significant portion of atmospheric carbon dioxide, and providing us with food, transportation, and a means of livelihood. Nevertheless, human activities have been making the global ocean more acidic, warmer, and lower in oxygen (IPCC, 2021). Such changes and their impacts on ecosystems are highly variable, particularly in coastal areas where exchanges with the atmosphere and the land are more pronounced. The capacity to collect ocean observations is insufficient in many parts of the world, particularly in developing countries (IOC-UNESCO, 2020). This is linked not only to a dearth of funding and instrumentation but also to a lack of scientific personnel with the capacity to collect, analyze, and interpret oceanographic data. The Partnership for Observation of the Global Ocean (POGO) runs capacity development programs whose objectives are to develop key skills, capabilities, and capacities needed for worldwide ocean observations, and to nurture new generations of experts and leaders in ocean affairs (see Urban and Seeyave, 2021). Since 2004, the partnership between POGO and the Nippon Foundation (NF) has offered an extensive array of training programs to nearly 500 early career scientists from 74 countries, mainly with emerging economies. The NF-POGO Alumni Network for the Ocean (NANO) was created in 2010 as a means to keep track of trainees’ career progressions, maximize the benefits from the training received, and provide further opportunities for networking and collaboration. One of NANO’s major goals is to promote joint research activities among its members, ultimately applying ocean observations for societal benefit.info:eu-repo/semantics/publishedVersio

    Addressing data gaps in marine litter distribution : citizen science observation of plastics in coastal ecosystems by high-school students

    No full text
    The Citizen Observation of Local Litter in coastal ECosysTems (COLLECT) project (2021-2022) is a citizen science initiative, supported by the Partnership for Observation of the Global Ocean (POGO), which aimed to acquire distribution and abundance data of coastal plastic litter in seven countries: in Africa (Benin, Cabo Verde, Cote d'Ivoire, Ghana, Morocco, Nigeria) and Asia (Malaysia). In this paper, we describe the workflow used to establish and run this project, as well as the methodologies to acquire data. The COLLECT project consisted of training local students (15 - 18 years old) from ten second cycle institutions ( "high schools ") on sampling and analyzing macro-, meso- and microplastics in beach sediments, using a quantitative assessment protocol. We further describe in detail the methodologies applied in assessing the impact of participating in the activities from a social sciences perspective. All documents and materials resulting from this project will be open access and available according to the FAIR Principles (Findable, Accessible, Interoperable, and Reusable). The results and outcomes from COLLECT will contribute to expanding knowledge and establishing baseline information on coastal plastic pollution, with citizen science being an enabler of open science, allowing data to be freely available to the public, academics and policymakers. Expected results from the use of the COLLECT protocol globally will further contribute to the identification of hotspots of coastal plastic litter, and bring awareness to local communities on the potential consequences of plastic pollution. The COLLECT project actively contributes with data suitable to survey plastic litter to the United Nations' Sustainable Development Goals (UN SDGs), in particular to SDG 14, on the sustainable use of the ocean
    corecore