15 research outputs found

    Utilizing the Pressure Gradients of The Greenhouse on Mars

    No full text
    Current models of greenhouse design primarily focus on enabling a means for water recycling, air revitalization, and food production. However, the enormous potential of using interior landscaping for positive psychological effects on the crew has been neglected. An indoor garden impacts living conditions within a confined environment of surface habitats in active and passive ways. Actively, from the human factors perspective, it diversifies the crew’s diet and adds the enjoyment of on-site gardening to routine activities. Passively, it brings colors, textures, and aromas into the otherwise mundane interior environment. This research by design process starts with plant selection based on their nutritional values using recipes from different cultures. Next, environmental requirements are considered for a hydroponic planting system for selected plants such as temperature, pH, and pollination methods. Afterward, the sizes of mature plants are reviewed to generate structural measurements of plant beds. Since architectural elements and design principles are linear, planar, and three-dimensional (3D), the integrated result is characterized into four categories: Plant Bracket, Plant Wall, Plant Trellis, and Plant Box. Finally, this project concludes by proposing the criteria for feasibility studies pertaining to the construction of a greenhouse on the Mars surface at different stages of infrastructure development. Design factors for the evaluation of greenhouse module proposals are presented and categorized by the level of their impact on overall mission planning and success.Mechanical Engineering, Department o

    -Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide

    No full text
    Objective(s):Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. a-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since a-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of a-terpineol on morphine-induced dependence and tolerance in mice. Materials and Methods: The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of a-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Results: Administration of a-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, a-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of a-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of a-terpineol on dependence and tolerance to morphine. Conclusion: These findings indicate that a-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production

    Protective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats

    No full text
    Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials and Methods: Cerebral ischemia was induced by transient bilateral common carotid artery occlusion in male Wistar rats. The rats were allocated to sham, ischemia, and α-terpineol-treated groups. α-Terpineol was given at doses of 50, 100, and 200 mg/kg, IP once daily for 7 days post ischemia. Morris water maze (MWM) test was used to assess spatial memory and in vivo extracellular recording of long-term potentiation (LTP) in the hippocampal dentate gyrus was carried out to evaluate synaptic plasticity. Malondialdehyde (MDA) was measured to assess the extent of lipid peroxidation in the hippocampus. Results: In MWM test, α-terpineol (100 mg/kg, IP) significantly decreased the escape latency during training trials (

    Attenuation of morphine tolerance and dependence by thymoquinone in mice

    No full text
    Objectives: Dependence and tolerance are major restricting factors in the clinical use of opioid analgesics. In the present study, the effects of thymoquinone, the major constituent of Nigella sativa seeds, on morphine dependence and tolerance were investigated in mice. Materials and Methods: Male adult NMRI mice were made tolerant and dependent by repeated injections of morphine (50, 50, and 75 mg/kg, i.p. on 9 a.m., 1 p.m., and 5 p.m., respectively) during a 3-day administration schedule. The hot-plate test was used to assess tolerance to the analgesic effects of morphine. Naloxone (2 mg/kg, i.p.) was injected to precipitate withdrawal syndrome in order to assess the morphine dependence. To evaluate the effects of thymoquinone on tolerance and dependence to morphine, different single or repeated doses of thymoquinone were administered in mice. Rotarod was used to assess the motor coordination. Results: Administration of single or repeated doses of thymoquinone (20 and 40 mg/kg, i.p.) significantly decreased the number of jumps in morphine dependent animals. Repeated administration of thymoquinone (20 and 40 mg/kg, for 3 days) and also single injection of thymoquinone (40 mg/kg, on the fourth day) attenuated tolerance to the analgesic effect of morphine. None of the thymoquinone doses (10, 20, and 40 mg/kg) produced any antinociceptive effects on their own. Motor coordination of animals was impaired by the high dose of thymoquinone (40 mg/kg). Conclusion: Based on these results, it can be concluded that thymoquinone prevents the development of tolerance and dependence to morphine

    Role of L-arginine/NO/cGMP/KATP channel signaling pathway in the central and peripheral antinociceptive effect of thymoquinone in rats

    No full text
    Objective(s): Growing evidence demonstrates that L-arginine/NO/cGMP/KATP channel pathway has a modulatory role in pain perception. Previous studies have shown that thymoquinone exerts antinociceptive effects; however, the mechanisms underlying antinociception induced by thymoquinone have not been fully clarified. The aim of the present study was to evaluate the role of L-arginine/NO/cGMP/KATP channel pathway in the central and peripheral antinociceptive effect of thymoquinone in rats.Materials and Methods: Rats were pretreated intraplantarly (IPL) or intracerebroventricularly (ICV) with L-arginine (the NO precursor), l-NAME (an NO synthase inhibitor), SNAP (an NO donor), methylene blue (a guanylyl cyclase inhibitor), glibenclamide (the blocker of KATP channel), and tetraethylammonium (TEA, a Kv channel blocker) before the injection of thymoquinone. Results: Local ipsilateral (20 and 40 μg, IPL) but not contralateral and ICV (4 and 8 μg) administration of thymoquinone caused a dose-dependent and significant antinociception in both early and late phases of the formalin test. Pretreatment of rats with L-arginine (100 μg, IPL or ICV) and SNAP (200 μg, IPL or ICV) increased while l-NAME (100 μg, IPL or 1 μg, ICV) and methylene blue (400 μg, IPL or ICV) decreased the antinociceptive effects of thymoquinone in the formalin test. The administration of TEA (IPL or ICV) did not modify but glibenclamide (50 μg, IPL or ICV) significantly abolished the peripheral and central antinociceptive effects of thymoquinone in both phases of the formalin test. Conclusion: The results of the present study indicate that L-arginine/NO/cGMP/KATP channel pathway participates in the central and peripheral antinociceptive effect of thymoquinone
    corecore