5,582 research outputs found
Low frequency VLBI in space using GAS-Can satellites: Report on the May 1987 JPL Workshop
Summarized are the results of a workshop held at JPL on May 28 and 29, 1987, to study the feasibility of using small, very inexpensive spacecraft for a low-frequency radio interferometer array. Many technical aspects of a mission to produce high angular resolution images of the entire sky at frequencies from 2 to 20 MHz were discussed. The workshop conclusion was that such a mission was scientifically valuable and technically practical. A useful array could be based on six or more satellites no larger than those launched from Get-Away-Special canisters. The cost of each satellite could be $1-2M, and the mass less than 90 kg. Many details require further study, but as this report shows, there is good reason to proceed. No fundamental problems have been discovered involving the use of untraditional, very inexpensive spacecraft for this type of mission
PCV53 COST ANALYSIS ON ANTICOAGULANT DRUG MARKET
Primer pla d'una finestra de fusta situada al
costat dret d'un petit altar de pedra blanca, a
la torre de Sant Rafael al Monestir de
Pedralbes
Lithofacies Control in Detrital Zircon Provenance Studies: Insights from the Cretaceous Methow Basin, Southern Canadian Cordillera
High-frequency sampling for detrital zircon analysis can provide a detailed record of fine-scale basin evolution by revealing the temporal and spatial variability of detrital zircon ages within clastic sedimentary successions. This investigation employed detailed sampling of two sedimentary successions in the Methow/Methow-Tyaughton basin of the southern Canadian Cordillera to characterize the heterogeneity of detrital zircon signatures within single lithofacies and assess the applicability of detrital zircon analysis in distinguishing fine-scale provenance changes not apparent in lithologic analysis of the strata. The Methow/Methow-Tyaughton basin contains two distinct stratigraphic sequences of middle Albian to Santonian clastic sedimentary rocks: submarine-fan deposits of the Harts Pass Formation/Jackass Mountain Group and fluvial deposits of the Winthrop Formation. Although both stratigraphic sequences displayed consistent ranges in detrital zircon ages on a broad scale, detailed sampling within each succession revealed heterogeneity in the detrital zircon age distributions that was systematic and predictable in the turbidite succession but unpredictable in the fluvial succession. These results suggest that a high-density sampling approach permits interpretation of fine-scale changes within a lithologically uniform turbiditic sedimentary succession, but heterogeneity within fluvial systems may be too large and unpredictable to permit accurate fine-scale characterization of the evolution of source regions. The robust composite detrital zircon age signature developed for these two successions permits comparison of the Methow/Methow-Tyaughton basin age signature with known plutonic source-rock ages from major plutonic belts throughout the Cretaceous North American margin. The Methow/Methow-Tyaughton basin detrital zircon age signature matches best with source regions in the southern Canadian Cordillera, requiring that the basin developed in close proximity to the southern Canadian Cordillera and providing evidence against large-scale dextral translation of the Methow terrane
Spitzer Warm Mission Transition and Operations
Following the successful dynamic planning and implementation of IRAC Warm Instrument Characterization activities, transition to Spitzer Warm Mission operations has gone smoothly. Operation teams procedures and processes required minimal adaptation and the overall composition of the Mission Operation System retained the same functionality it had during the Cryogenic Mission. While the warm mission scheduling has been simplified because all observations are now being made with a single instrument, several other differences have increased the complexity. The bulk of the observations executed to date have been from ten large Exploration Science programs that, combined, have more complex constraints, more observing requests, and more exo-planet observations with durations of up to 145 hours. Communication with the observatory is also becoming more challenging as the Spitzer DSN antenna allocations have been reduced from two tracking passes per day to a single pass impacting both uplink and downlink activities. While IRAC is now operating with only two channels, the data collection rate is roughly 60% of the four-channel rate leaving a somewhat higher average volume collected between the less frequent passes. Also, the maximum downlink data rate is decreasing as the distance to Spitzer increases requiring longer passes. Nevertheless, with well over 90% of the time spent on science observations, efficiency has equaled or exceeded that achieved during the cryogenic mission
Differential Epidemiology: IQ, Neuroticism, And Chronic Disease By The 50 U.S. States
Current research shows that geo-political units (e.g., the 50 U.S. states) vary meaningfully on psychological dimensions like intelligence (IQ) and neuroticism (N). A new scientific discipline has also emerged, differential epidemiology, focused on how psychological variables affect health. We integrate these areas by reporting large correlations between aggregate-level IQ and N (measured for the 50 U.S. states) and state differences in rates of chronic disease (e.g., stroke, heart disease). Controlling for health-related behaviors (e.g., smoking, exercise) reduced but did not eliminate these effects. Strong relationships also existed between IQ, N, disease, and a host of other state-level variables (e.g., income, crime, education). The nexus of inter-correlated state variables could reflect a general fitness factor hypothesized by cognitive epidemiologists, although valid inferences about causality will require more research.
The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System
We describe the layout and unique features of the focal plane system for
MIRI. We begin with the detector array and its readout integrated circuit
(combining the amplifier unit cells and the multiplexer), the electronics, and
the steps by which the data collection is controlled and the output signals are
digitized and delivered to the JWST spacecraft electronics system. We then
discuss the operation of this MIRI data system, including detector readout
patterns, operation of subarrays, and data formats. Finally, we summarize the
performance of the system, including remaining anomalies that need to be
corrected in the data pipeline
Prediction and Generation of Binary Markov Processes: Can a Finite-State Fox Catch a Markov Mouse?
Understanding the generative mechanism of a natural system is a vital
component of the scientific method. Here, we investigate one of the fundamental
steps toward this goal by presenting the minimal generator of an arbitrary
binary Markov process. This is a class of processes whose predictive model is
well known. Surprisingly, the generative model requires three distinct
topologies for different regions of parameter space. We show that a previously
proposed generator for a particular set of binary Markov processes is, in fact,
not minimal. Our results shed the first quantitative light on the relative
(minimal) costs of prediction and generation. We find, for instance, that the
difference between prediction and generation is maximized when the process is
approximately independently, identically distributed.Comment: 12 pages, 12 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/gmc.ht
- …