39 research outputs found

    Experimental observation of the crystallization of a paired holon state

    Full text link
    A new excitation is observed at 201 meV in the doped-hole ladder cuprate Sr14_{14}Cu24_{24}O41_{41}, using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the direction of the rungs. The excitation is found to be of charge nature, with a temperature independent excitation energy, and can be understood via an intra-ladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder (CDWL_L), but persists above the CDWL_L transition temperature (TCDWLT_{CDW_L}), indicating a strong local pairing above TCDWLT_{CDW_L}. The 201 meV excitation vanishes in La6_{6}Ca8_{8}Cu24_{24}O41+δ_{41+\delta}, and La5_{5}Ca9_{9}Cu24_{24}O41_{41} which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below TCDWT_{CDW}.Comment: Accepted for publication in Physical Review Letters (4 figures

    Minocycline treatment reduces mass and force output from fast-twitch mouse muscles and inhibits myosin production in C2C12 myotubes

    Get PDF
    Minocycline, a tetracycline-class of antibiotic, has been tested with mixed effectiveness on neuromuscular disorders such as amyotrophic lateral sclerosis, autoimmune neuritis and muscular dystrophy. The independent effect of minocycline on skeletal muscle force production and signalling remain poorly understood. Our aim here is to investigate the effects of minocycline on muscle mass, force production, myosin heavy chain abundance and protein synthesis. Mice were injected with minocycline (40 mg/kg i.p.) daily for 5 days and sacrificed at day six. Fast-twitch EDL, TA muscles and slow-twitch soleus muscles were dissected out, the TA muscle was snap-frozen and the remaining muscles were attached to force transducer whilst maintained in an organ bath. In C2C12 myotubes, minocycline was applied to the media at a final concentration of 10 µg/mL for 48 h. In minocycline treated mice absolute maximal force was lower in fast-twitch EDL while in slow-twitch soleus there was an increase in the time to peak and relaxation of the twitch. There was no effect of minocycline treatment on the other contractile parameters measured in isolated fast- and slow-twitch muscles. In C2C12 cultured cells, minocycline treatment significantly reduced both myosin heavy chain content and protein synthesis without visible changes to myotube morphology. In the TA muscle there was no significant changes in myosin heavy chain content. These results indicate that high dose minocycline treatment can cause a reduction in maximal isometric force production and mass in fast-twitch EDL and impair protein synthesis during myogenesis in C2C12 cultured cells. These findings have important implications for future studies investigating the efficacy of minocycline treatment in neuromuscular or other muscle-atrophy inducing conditions

    Audiotactile interactions in temporal perception

    Full text link

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Nerve repair : toward a sutureless approach

    No full text
    Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit.11 page(s

    Long term recovery of median nerve repair using laser-activated chitosan adhesive films

    No full text
    Sutures remain the standard peripheral nerve repair technique, whether applied directly or indirectly to nerve tissue. Unfortunately, significant postoperative complications can result, such as inflammation, neuroma formation and foreign body reactions. Photochemical-tissue-bonding (PTB) using rose Bengal (RB) integrated into a chitosan bioadhesive is an alternative nerve repair device that removes the need for sutures. Rats were arranged into three groups: RB-chitosan adhesives-repair, end-to-end epineural suture-repair (surgical standard) and sham laser-irradiated control. Groups were compared through histological assessment, electrophysiological recordings and grip motor strength. RB-chitosan adhesive repaired nerves displayed comparable results when compared to the standard suture-repair based on histological and electrophysiological findings. Functionally, RB-chitosan adhesive was associated with a quicker and more pronounced recovery of grip force when compared to the suture-repair.12 page(s

    Absence of large-diameter sensory fibres in a nerve to the cat humerus

    No full text
    A fine branch of the median nerve innervates the periosteum and medullary cavity of the cat humerus. After branching to innervate the periosteum on the medial surface of the humerus, the nerve enters and supplies the medullary cavity via a nutrient foramen, accompanied by a small artery and vein. The composition of the fibres in the nerve was examined using electron microscopy. Myelinated fibres with diameters of 0.8–6.6 µm and unmyelinated fibres with diameters of 0.1–1.4 µm were observed. These diameters indicate that afferent fibres of this nerve are confined within the Group III and IV categories, and may therefore be nociceptive or mechanoreceptive in function. In addition, autonomic efferent fibres may also be present in these fibre groups. As no fibre diameters greater than 7 µm were noted, it appears that Group I and II fibres are absent in this nerve. The fibre distribution suggests that the principal role of this nerve is to relay bone-related nociceptive or mechanoreceptive information to the central nervous system and to provide autonomic regulatory influences on the bone
    corecore