7 research outputs found

    The response of transgenic strawberry plants overexpressing a drought induced gene to water stress

    Get PDF
    Transgenic strawberry plants expressing a chitinase gene were evaluated for their performance during water stress. Transgenic and non-transgenic plants were assigned to three different soil water contents (SWC). They were kept under well-watered, moderately watered or stressed water conditions. At fi nal stage of experiment, dry matter components, leaf area, photosynthesis rate, water-use effi ciency (WUE) and water use per leaf area (WULA) were measured. Transgenic lines showed vigorous growth as compared with non-transgenic plants. Leaf area (LA), leaf dry matter (LDM), root dry matter (RDM) and total dry matter (TDM) of well-watered and water-stressed plants of transgenic lines were signifi cantly higher than those of non-transgenic plants. The WUE increased signifi cantly in transgenic lines, while water use (WU) per leaf area reduced in transgenic plants relative to control plants. Photosynthetic rates were not different between transgenic and non-transgenic plants. Soil water contents signifi cantly affected dry matter production, and photosynthetic rates. Transgenic plants also showed vigorous growth in comparison to non-transgenic plants when grown in vitro. Shoot, root and total fresh and dry weight of in vitro transgenic lines were significantly higher than those of nontransgenic plants

    Soil moisture monitoring by downscaling of remote sensing products using LST/VI space derived from MODIS products

    No full text
    Soil moisture (SM) has an important role in the earth's water cycle and is a key variable in water resources management. Considering the critical state of water resources in the Urmia Lake basin, northwest Iran, this study examined the potential for utilizing a variety of remote sensing data and products, in conjunction with a promising downscaling method, to monitor soil moisture with a reasonable spatial and temporal resolution, as a novel and effective tool for agricultural and water resource management. Accordingly, remote sensing products of surface soil moisture were scaled to MODIS's image scale (∼1 km) using the UCLA downscaling method and Temperature, Vegetation, Drought Index (TVDI) values obtained from the scattering space method. Results showed that the LPRM, ESA-CCI, and GLDAS downscaled images had the highest inverse correlation with the TVDI (best results) accordingly equal to −0.600, −0.787, and −0.630. Also, based on the evaluation of the obtained results with the ground stations data, the LPRM and the ESA-CCI downscaled images had the best statistical indices values accordingly in 2010 and 2014 that confirm the promising application of remote sensing soil moisture data (rLPRM (2010) = 0.92, MAELPRM (2010) = 4.14%, RMSELPRM (2010) = 6.39% and rESA-CCI (2014) = 0.7, MAEESA-CCI (2014) = 2.23%, RMSEESA-CCI (2014) = 2.59%). HIGHLIGHTS Soil moisture spatio-temporal monitoring was carried out as an important step in the path of sustainable development.; The research conducted on the downscaling of soil moisture radar products using MODIS images alongside scattering space and UCLA methods proved their ability in various land uses.; LPRM and ESA-CCI products were found to have the highest accuracy in monitoring soil moisture in the Urmia Lake basin.

    The effect of alternate partial root-zone drying and deficit irrigation on the yield, quality, and physiochemical parameters of milled rice

    No full text
    While paddy fields produce a high yield, they also require a large amount of water and produce a significant amount of methane. Therefore, the adoption of water-saving irrigation techniques for rice cultivation is critical. Furrowed rice farming may be a viable alternative to paddy rice cultivation. The objective of the present study was to evaluate the impact of alternate partial root-zone drying irrigation on rice yield, milled rice quality, and cooking quality under furrow rice cultivation. A two-year field trial was conducted on a local rice cultivar, Tarom Hashemi, in 2015 and 2016. Seven water regimes, including three levels of regulated deficit irrigation (RDI), three levels of alternate partial root-zone drying irrigation (APRDI), and conventional flooding irrigation (CFI), were used in this study. In RDI and APRDI treatments, plots were irrigated when soil matric potential had reached −0.1 (RDI1 and APRDI1), −0.3 (RDI3 and APRDI3), and −0.6 bar (RDI6 and APRDI6). RDI1 and APRDI1 treatments produced milled rice yield similar to the CFI, while irrigation water productivity (IWP) was significantly higher by 22.9% and 45.7%, respectively. Regardless of the soil water potential, the IWP in APRDI treatments was 16% higher than that of RDI treatments. Severe water stress (RDI6 and APRDI6) caused a marked increase in amylose content and alkali spreading value of milled rice resulting in improved cooking quality. Nitrogen uptake in APRDI treatments was 2% higher than that of RDI treatments. On average, methane emission per milled grain yield declined by 77.9% and 78.7% in RDI and APRDI treatments, respectively. Our data indicate that the expensive and laborious practice of puddling can be avoided to increase water productivity and improve rice quality without sacrificing yield. The results also show that furrow rice cultivation could significantly reduce the methane emission contribution of rice production

    Circadian rhythm leaf movement of Phaseolus vulgaris and the role of calcium ions

    No full text
    Legume plants, due to their distinctive botanical characteristics, such as leaf movements, physiological characteristics, such as nitrogen fixation, and their abilities to endure environmental stresses, have important roles in sustainable pastures development. Leaf movement of legume plants is turgor regulated and osmotically active fluxes of ions between extensor and flexor of pulvinus cause this movement. To determine the role of calcium ions in circadian leaf movements of Phaseolus vulgaris L., a radiotracer technique experiment using 45Ca ions were employed. Measurements were taken during circadian leaf movements, and samples were taken from different parts of the leaflet. The 45Ca β-particle activity reduced from leaflet base pulvinus to leaf tip. The pulvinus had the highest activity, while the leaf tip had the lowest. By increase of the ratio of 45Ca β-particle activity within flexor to extensor (Fl/Ex) the midrib-petiole angle, as an indicator of leaf movement, increased linearly during circadian leaf movement (r = 0.86). The 45Ca β-particle activity of Flex/Ext ratio reduced linearly (r = −0.88) toward midnight. In conclusion, it was found that calcium ions accumulation is opposite to the fluxes of osmatically active ions and water movement. Calcium ions accumulate at less negative water potential side of the pulivnus
    corecore