14,690 research outputs found

    New extensions of Rayleigh distribution based on inverted-Weibull and Weibull distributions

    Get PDF
    The Rayleigh distribution was proposed in the fields of acoustics and optics by lord Rayleigh. It has wide applications in communication theory, such as description of instantaneous peak power of received radio signals, i.e. study of vibrations and waves. It has also been used for modeling of wave propagation, radiation, synthetic aperture radar images, and lifetime data in engineering and clinical studies. This work proposes two new extensions of the Rayleigh distribution, namely the Rayleigh inverted-Weibull (RIW) and the Rayleigh Weibull (RW) distributions. Several fundamental properties are derived in this study, these include reliability and hazard functions, moments, quantile function, random number generation, skewness, and kurtosis. The maximum likelihood estimators for the model parameters of the two proposed models are also derived along with the asymptotic confidence intervals. Two real data sets in communication systems and clinical trials are analyzed to illustrate the concept of the proposed extensions. The results demonstrated that the proposed extensions showed better fitting than other extensions and competing models

    Mine tailings-based geopolymers: Physical and mechanical properties

    Get PDF
    The mining sector generates a substantial quantity of stone waste and tailings, which constitutes an environmental risk. The most prevalent method for disposing of this industrial waste is dumping, which contributes to soil deterioration and water contamination while acquiring precious land. It can be recycled using a number of processes, such as the promising geopolymerization technique, which transforms waste into value. This study reviews current developments in the manufacturing of mine tailings-based geopolymer composites from industrial waste as a possible sustainable building material. This paper also gives in-depth studies on the characteristics and behaviors of mine tailings composites used in geopolymer manufacturing, including physical and mechanical properties. This review also identifies knowledge gaps that must be filled in order to advance mine tailings composites for geopolymers

    Utilizing radiation for smart robotic applications using visible, thermal, and polarization images.

    Get PDF
    The domain of this research is the use of computer vision methodologies in utilizing radiation for smart robotic applications for driving assistance. Radiation can be emitted by an object, reflected or transmitted. Understanding the nature and the properties of the radiation forming an image is essential in interpreting the information in that image which can then be used by a machine e.g. a smart vehicle to make a decision and perform an action. Throughout this work, different types of images are used to help a robotic vehicle make a decision and perform a certain action. This work presents three smart robotic applications; the first one deals with polarization images, the second one deals with thermal images and the third one deals with visible images. Each type of these images is formed by light (radiation) but in a way different from other types where the information embedded in an image depends on the way it was formed and how the light was generated. For polarization imaging, a direct method utilizing shading and polarization for unambiguous shape recovery without the need for nonlinear optimization routines is proposed. The proposed method utilizes simultaneously polarization and shading to find the surface normals, thus eliminating the reconstruction ambiguity. This can be useful to help a smart vehicle gain knowledge about the terrain surface geometry. Regarding thermal imaging, an automatic method for constructing an annotated thermal imaging pedestrian dataset is proposed. This is done by transferring detections from registered visible images simultaneously captured at day-time where pedestrian detection is well developed in visible images. Histogram of Oriented Gradients (HOG) features are extracted from the constructed dataset and then fed to a discriminatively trained deformable part based classifier that can be used to detect pedestrians at night. The resulting classifier was tested for night driving assistance and succeeded in detecting pedestrians even in the situations where visible imaging pedestrian detectors failed because of low light or glare of oncoming traffic. For visible images, a new feature based on HOG is proposed to be used for pedestrian detection. The proposed feature was augmented to two state of the art pedestrian detectors; the discriminatively trained Deformable Part based models (DPM) and the Integral Channel Features (ICF) using fast feature pyramids. The proposed approach is based on computing the image mixed partial derivatives to be used to redefine the gradients of some pixels and to reweigh the vote at all pixels with respect to the original HOG. The approach was tested on the PASCAL2007, INRIA and Caltech datasets and showed to have an outstanding performance

    Determine the Optimal Sequence-Dependent Completion Times for Multiple Demand with Multi-Products Using Genetic Algorithm

    Get PDF
    Sequencing is the most impact factor on the total completion time , the products sequences inside demands that consist from muti-product and for multiple demands . It is very important in assembly line and batch production . The most important drawback of existing methods used to solve the sequencing problems is the sequence must has a few products and dependent completion time for single demand . In this paper we used genetic algorithm –based Travelling Salesman Problem with Precedence Constraints Approach ( TSPPCA)  to minimize completion time . The main advantage of this new method , it is used to solve the sequencing problems for multiple demand with multi-product In this paper , we compare between modify the assignment method ( MAM ) and genetic algorithm  depend on least completion time , the results discern that   GA  has minimum completion time Keywords: products sequences , completion time , travel salesman problem (TSP ) , TSPPCA , genetic algorithm. 

    Opportunistic Spectrum Sharing using Dumb Basis Patterns: The Line-of-Sight Interference Scenario

    Full text link
    We investigate a spectrum-sharing system with non-severely faded mutual interference links, where both the secondary-to-primary and primary-to-secondary channels have a Line-of-Sight (LoS) component. Based on a Rician model for the LoS channels, we show, analytically and numerically, that LoS interference hinders the achievable secondary user capacity. This is caused by the poor dynamic range of the interference channels fluctuations when a dominant LoS component exists. In order to improve the capacity of such system, we propose the usage of an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna at the secondary terminals. An ESPAR antenna requires a single RF chain and has a reconfigurable radiation pattern that is controlled by assigning arbitrary weights to M orthonormal basis radiation patterns. By viewing these orthonormal patterns as multiple virtual dumb antennas, we randomly vary their weights over time creating artificial channel fluctuations that can perfectly eliminate the undesired impact of LoS interference. Because the proposed scheme uses a single RF chain, it is well suited for compact and low cost mobile terminals
    corecore