7,225 research outputs found

    New and renewable energy and environmental engineering

    Get PDF
    There is an acute scarcity of potable water in many parts of the world, and especially in most of the Middle East region. Important advances have been made in desalination technology but its wide application is restricted by relatively high capital and input energy costs, even when solar energy is used. Until recently, flat-plate solar collectors have usually been employed to distill water in compact desalination systems. Currently, it is possible to replace these collectors by the more advanced evacuated tube collectors, which are now available on the market at a similar price. The research which is concerned with the development of a novel small scale solar water desalination technology, consists of experimental and theoretical investigations of the operation of a multi stage solar still desalination system coupled with a heat pipe evacuated tube solar collector with an aperture area of about 1.7 m(^2). The multi stage still was tested to recover latent heat from the evaporation and condensation processes in each of its four stages. A number of experimental tests were carried out using a laboratory rig to investigate its water production capacity. Solar radiation (insolation) during a mid-summer day in the Middle East region was simulated by an array of 110 halogen flood lights. Computational Fluid Dynamics (CFD) modeling of the evaporation and condensation processes in one of the still's stages was conducted using FLUENT 6.2 software. The simulation results demonstrate the importance of the various parameters affecting the total production rate of the solar still and provide detailed information on the temperature distribution and condensate formation inside the solar still. However, it was found that the CFD technique at this stage does not provide accurate quantitative predictions and results obtained can be used only for qualitative analysis. Hence, the use of a lumped parameter mathematical model was preferred for analysis and design purpose. A lumped parameter model has been developed to describe the system's operation. It consists of a system of ordinary differential equations of energy and mass conservation written for each stage of the still. A MATLAB computer program was written to solve the system of governing equations to simulate the evaporation and condensation processes and the experimental results were used to validate numerical predictions. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. The test results demonstrate that the system produces about 9 kg of clean water per day and has a distillation efficiency of 90%. The overall efficiency is 33% due to the presence of heat losses in the system. However, this level of efficiency is greater of that for conventional solar stills. Following the experimental calibration of the lumped parameter model, this was used for determination of rational design parameters of the still and it was demonstrated that the performance of the system could be considerably improved to produce 11 kg/m(^2) of water per day if the number of stages and evaporation area were 4 and 1 m(^2), respectively. A water quality analysis was performed for the distilled water and the levels of total dissolved solids, electrical conductivity and pH were well within the range defined by the World Health Organization guidelines for drinking water. An economic study was also conducted for the system and it was shown that the distilled water costs of 0.016 US$/litre with a payback period of 6 months in the Middle East region conditions. This research demonstrates, empirically and theoretically, the potential role in the field of solar desalination of the multistage solar still coupled to the evacuated tube solar collector. Not only is this system a promising new technology but it could prove to be particularly appropriate in remote and rural areas. Simultaneously this system also uses a completely clean energy source and contributes to tackling environmental pollution, global carbon emissions and climate change problems

    VEGF (Vascular Endothelial Growth Factor) Induces NRP1 (Neuropilin-1) Cleavage via ADAMs (a Disintegrin and Metalloproteinase) 9 and 10 to Generate Novel Carboxy- Terminal NRP1 Fragments That Regulate Angiogenic Signaling

    Get PDF
    OBJECTIVE: NRP1(neuropilin-1) acts as a coreceptor for VEGF (vascular endothelial growth factor) with an essential role in angiogenesis. Recent findings suggest that posttranslational proteolytic cleavage of VEGF receptors may be an important mechanism for regulating angiogenesis, but the role of NRP1 proteolysis and the NRP1 species generated by cleavage in endothelial cells is not known. To characterize NRP1 proteolytic cleavage in endothelial cells, determine the mechanism, and investigate the role of NRP1 cleavage in regulation of endothelial cell function. APPROACH AND RESULTS: NRP1 species comprising the carboxy (C)-terminal and transmembrane NRP1 domains but lacking the ligand-binding A and B regions are constitutively expressed in endothelial cells. Generation of these C-terminal domain NRP1 proteins is upregulated by phorbol ester and Ca2+ ionophore, and reduced by pharmacological inhibition of metalloproteinases, by small interfering RNA-mediated knockdown of 2 members of ADAM (a disintegrin and metalloproteinase) family, ADAMs 9 and 10, and by a specific ADAM10 inhibitor. Furthermore, VEGF upregulates expression of these NRP1 species in an ADAM9/10-dependent manner. Transduction of endothelial cells with adenoviral constructs expressing NRP1 C-terminal domain fragments inhibited VEGF-induced phosphorylation of VEGFR2 (VEGF receptor tyrosine kinase)/KDR and decreased VEGF-stimulated endothelial cell motility and angiogenesis in coculture and aortic ring sprouting assays. CONCLUSIONS: These findings identify novel NRP1 species in endothelial cells and demonstrate that regulation of NRP1 proteolysis via ADAMs 9 and 10 is a new regulatory pathway able to modulate VEGF angiogenic signaling

    Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury

    Get PDF
    AIMS: Neuropilins 1 and 2 (NRP1 and NRP2) play crucial roles in endothelial cell migration contributing to angiogenesis and vascular development. Both NRPs are also expressed by cultured vascular smooth muscle cells (VSMCs) and are implicated in VSMC migration stimulated by PDGF-BB, but it is unknown whether NRPs are relevant for VSMC function in vivo. We investigated the role of NRPs in the rat carotid balloon injury model, in which endothelial denudation and arterial stretch induce neointimal hyperplasia involving VSMC migration and proliferation. METHODS AND RESULTS: NRP1 and NRP2 mRNAs and proteins increased significantly following arterial injury, and immunofluorescent staining revealed neointimal NRP expression. Down-regulation of NRP1 and NRP2 using shRNA significantly reduced neointimal hyperplasia following injury. Furthermore, inhibition of NRP1 by adenovirally overexpressing a loss-of-function NRP1 mutant lacking the cytoplasmic domain (ΔC) reduced neointimal hyperplasia, whereas wild-type (WT) NRP1 had no effect. NRP-targeted shRNAs impaired, while overexpression of NRP1 WT and NRP1 ΔC enhanced, arterial re-endothelialization 14 days after injury. Knockdown of either NRP1 or NRP2 inhibited PDGF-BB-induced rat VSMC migration, whereas knockdown of NRP2, but not NRP1, reduced proliferation of cultured rat VSMC and neointimal VSMC in vivo. NRP knockdown also reduced the phosphorylation of PDGFα and PDGFβ receptors in rat VSMC, which mediate VSMC migration and proliferation. CONCLUSION: NRP1 and NRP2 play important roles in the regulation of neointimal hyperplasia in vivo by modulating VSMC migration (via NRP1 and NRP2) and proliferation (via NRP2), independently of the role of NRPs in re-endothelialization

    Solvability of an Infinite System of Singular Integral Equations

    Get PDF
    2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.Schauder's fixed point theorem is used to establish an existence result for an infinite system of singular integral equations in the form: (1) xi(t) = ai(t)+ ∫t0 (t − s)− α (s, x1(s), x2(s), …) ds, where i = 1,2,…, α ∈ (0,1) and t ∈ I = [0,T]. The result obtained is applied to show the solvability of an infinite system of differential equation of fractional orders

    Automatic Detection of Self-Adaptors for Psychological Distress

    Get PDF
    Psychological distress is a significant and growing issue in society. Automatic detection, assessment, and analysis of such distress is an active area of research. Compared to modalities such as face, head, and vocal, research investigating the use of the body modality for these tasks is relatively sparse. This is, in part, due to the lack of available datasets and difficulty in automatically extracting useful body features. Recent advances in pose estimation and deep learning have enabled new approaches to this modality and domain. We propose a novel method to automatically detect self-adaptors and fidgeting, a subset of self-adaptors that has been shown to be correlated with psychological distress. We also propose a multi-modal approach that combines different feature representations using Multi-modal Deep Denoising Auto-Encoders and Improved Fisher Vector encoding. We also demonstrate that our proposed model, combining audio-visual features with automatically detected fidgeting behavioral cues, can successfully predict distress levels in a dataset labeled with self-reported anxiety and depression levels. To enable this research we introduce a new dataset containing full body videos for short interviews and self-reported distress labels.King's College, Cmabridg

    Electrical Properties of Imperfect TGFB

    Get PDF

    Role of N-terminal pro B-type natriuretic peptide in acute exacerbation of chronic obstructive pulmonary disease

    Get PDF
    AbstractObjectivesAcute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a major public health problem. Recognition of comorbid heart dysfunction in such patients is often difficult. The aim of this work is to evaluate the role of N-terminal pro B-type natriuretic peptide (Nt-pro BNP) in AECOPD with respiratory failure.Patients and methodsThis study was conducted on 20 patients with AECOPD and respiratory failure. All patients were subjected to history taking, clinical examination, routine laboratory investigations, arterial blood gases analysis, echocardiography and estimation of plasma level of NT-pro BNP.ResultsPatients were classified into 3 groups: Group I: those without heart dysfunction (40%), Group II: those with diastolic heart failure (40%), and Group III: those with systolic heart failure (20%). NT-pro BNP mean±SD in group I was 673.38±416.02, in group II 1962±847.88, and in group III 6776.75±1433.59pg/ml. There was a statistically significant difference between the three groups (p=0.001). NT-pro BNP showed a statistically significant inverse correlation with pH (p=0.005), ejection fraction (p=0.007) and a direct one with both left ventricular systolic (p=0.008) and diastolic (p=0.016) dimensions and E/A (p=0.016). The NT-pro BNP significantly decreased after recovery from AECOPD (p=0.030). The receiver operating characteristic curve demonstrated a ruling out of LV dysfunction in AECOPD of a sensitivity of 100% and a specificity of 60%; and a ruling in of a sensitivity of 48% and a specificity of 67%.ConclusionPlasma BNP is usually elevated in AECOPD and is related to right or left ventricular systolic or diastolic dysfunction

    A novel transgenic mouse model reveals an essential role for Bcar1/p130Cas in embryonic heart development and outflow tract septation

    Get PDF

    Diamagnetic Anisotropy and Molecular Structure of Succinimide Derivatives

    Get PDF
    corecore