7 research outputs found

    An overview on the small heat shock proteins

    Get PDF
    In the last 25 years, a huge amount of literature has been accumulated describing the cell’s response to different kinds of environmental stress conditions, such as high temperatures, altered pH, exposure of the cell to toxins, starvation, oxygen, and water deprivation, among others. Heat shock proteins (HSPs) are one of the main expressed products of the cell in response to stresses. HSPs can be classified into six structurally conserved classes according to their molecular weight namely, HSP100, HSP90, HSP70, HSP60, small heat shock proteins (sHSPs) and ubiquitin (8.5 kDa). In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress. In animals, only one sHSP gene has been located in yeast cells, ten in mammalian, two in birds and four genes have been found in Drosophila. However, in plants more than 20 sHSPs have been reported and they can be divided into 6 classes, of which, 3 classes (CI, CII and CIII) are in the cytosole or in the nucleus and the other three (CIV, CV and CVI) in the plastids, endoplasmic reticulum and mitochondria. Mitochondrial and chloroplast sHSPs protect electron transport chain. During development in animals, sHSP genes are normally regulated at late neurula and early tailbud stage and in plants during pollen development, seed maturation, seed imbibition and germination. Transcriptional regulation of sHSPs depends on particular activation of heat shock factors (HSF) which recognize the highly conserved heat-shock elements (HSEs). After the heat stress has been released, the sHSPs are quite stable, suggesting that sHSPs may be important for recovery as well

    Comparative analysis of regulatory elements in different germin-like protein gene promoters

    Get PDF
    Germin and germin-like proteins (GLPs) the members of cupin superfamily of proteins, which are functionally most diverse proteins. Germin and GLPs have some unique features as they are highly resistant to proteases and to degradation by heat, high pH and detergents like Sodium dodecylSulphate (SDS). They are water soluble extracellular enzymatic protein that may also have Oxalate Oxidase (OxO), Superoxide dismutase (SOD) or ADP-glucose pyrophosphate or phosphodiestrase (AGPPase) activities. At the moment seven GLP gene promoter from different organisms have been studied and published. These all promoter sequences have been analyzed in this study. It was observed that these promoters have important regulatory elements, which are involved in various important functions. These elements have been compared on the basis of location, copy number, and distributed on positive and negative strands. It was also observed that some of these elements are common and remained conserved among all GLP promoters during evolution. Such regulatory elements are commonly observed in seed storage proteins, dehydration in response to light, senescence observed on exposure to dark and in elements specific for expression in pollen. Moreover, these commonelements are reported to be expressed under environmental stresses (salt and pathogen attack) and to growth regulators

    Drinking Water Salinity and Infant Mortality in Coastal Bangladesh

    No full text

    REVIEW KOHL (SURMA): RETROSPECT AND PROSPECT

    No full text
    ABSTRACT Kohl, since antiquity has always been given a prime importance in ophthalmology for the protection and treatment of various eye ailments. However, for decades various conflicting reports in the literature have been published relating to Kohl application to eyes being responsible for causing higher blood lead concentration, which may cause lead poisoning. While at the same time, a number of research studies and reports have also been published negating any such links with increased blood lead level upon Kohl (surma) application. In view of the above mentioned facts, this review article is written with the objective to highlight various data from past and present research studies and reports about Kohl, so as to provide valuable information to both the users and the research workers about it's scientific background and effects when applied into eyes. A large number of items and topics (such as Kohl, surma, eye cosmetic, traditional eye preparations, environmental lead pollution, galena, lead sulphide etc.) have been taken into consideration while compiling this review article. In conclusion, the authors of this review article feel that the relation between Kohl and toxicity or increased blood lead concentration upon it's application to eyes as reported elsewhere is likely to be more of theoretical nature rather than a practical health hazard

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
    corecore