25 research outputs found

    236 - Specific agonist of the constitutive androstane receptor improves reverse cholesterol transport and cholesterol homeostasis in hyperlipidemic mice

    No full text
    International audienceBackground and Aims: The constitutive androstane receptor (CAR) is known to be mainly involved in xenobiotic metabolism. The aim of our study was to assess whether pharmacological CAR activation could also affect cholesterol homeostasis in hyperlipidemic mouse models

    Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia

    No full text
    The balance between bioactivation and degradation of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is critical for ensuring appropriate biological effects of vitamin D. Cytochrome P450, family 24–mediated (CYP24-mediated) 24-hydroxylation of 1,25(OH)(2)D(3 )is an important step in the catabolism of 1,25(OH)(2)D(3). The enzyme is directly regulated by vitamin D receptor (VDR), and it is expressed mainly in the kidney, where VDR is also abundant. A recent report suggests that activation of steroid and xenobiotic receptor (SXR) also enhances the expression of CYP24, providing a new molecular mechanism of drug-induced osteomalacia. However, here we showed that activation of SXR did not induce CYP24 expression in vitro and in vivo, nor did it transactivate the CYP24 promoter. Instead, SXR inhibited VDR-mediated CYP24 promoter activity, and CYP24 expression was very low in tissues containing high levels of SXR, including the small intestine. Moreover, 1,25(OH)(2)D(3)-induced CYP24 expression was enhanced in mice lacking the SXR ortholog pregnane X receptor, and treatment of humans with the SXR agonist rifampicin had no effect on intestinal CYP24 expression, despite demonstration of marked CYP3A4 induction. Combined with our previous findings that CYP3A4, not CYP24, plays the dominant role in hydroxylation of 1,25(OH)(2)D(3 )in human liver and intestine, our results indicate that SXR has a dual role in mediating vitamin D catabolism and drug-induced osteomalacia

    NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR

    No full text
    <div><p>Using a GWA analysis of a comprehensive glioma specimen population, we identified whole gain of chromosome 19 as one of the major chromosomal aberrations that correlates to patients’ outcomes. Our analysis of significant loci revealed for the first time NOTCH3 as one of the most significant amplification. NOTCH3 amplification is associated with worse outcome compared to tumors with non-amplified locus. NOTCH receptors (NOTCH1-4) are key positive regulators of cell-cell interactions, angiogenesis, cell adhesion and stem cell niche development which have been shown to play critical roles in several human cancers. Our objective is to determine the molecular roles of NOTCH3 in glioma pathogenesis and aggressiveness. Here we show for the first time that NOTCH3 plays a major role in glioma cell proliferation, cell migration, invasion and apoptosis. Therefore, our study uncovers the prognostic value and the oncogenic function of NOTCH3 in gliomagenesis and supports NOTCH3 as a promising target of therapy in high grade glioma. Our studies allowed the identification of a subset of population that may benefit from GSI- or anti-NOTCH3- based therapies. This may lead to the design of novel strategies to improve therapeutic outcome of patients with glioma by establishing medical and scientific basis for personalized chemotherapies.</p></div

    Tumor Derived Mutations of Protein Tyrosine Phosphatase Receptor Type K Affect Its Function and Alter Sensitivity to Chemotherapeutics in Glioma

    Get PDF
    <div><p>Poor prognosis and resistance to therapy in malignant gliomas is mainly due to the highly dispersive nature of glioma cells. This dispersive characteristic results from genetic alterations in key regulators of cell migration and diffusion. A better understanding of these regulatory signals holds promise to improve overall survival and response to therapy. Using mapping arrays to screen for genomic alterations in gliomas, we recently identified alterations of the protein tyrosine phosphatase receptor type kappa gene (PTPRK) that correlate to patient outcomes. These PTPRK alterations are very relevant to glioma biology as PTPRK can directly sense cell–cell contact and is a dephosphorylation regulator of tyrosine phosphorylation signaling, which is a major driving force behind tumor development and progression. Subsequent sequencing of the full length PTPRK transcripts revealed novel PTPRK gene deletion and missense mutations in numerous glioma biopsies. PTPRK mutations were cloned and expressed in PTPRK-null malignant glioma cells. The effect of these mutations on PTPRK anti-oncogenic function and their association with response to anti-glioma therapeutics, such as temozolomide and tyrosine kinase inhibitors, was subsequently analyzed using <i>in vitro</i> cell-based assays. These genetic variations altered PTPRK activity and its post-translational processing. Reconstitution of wild-type PTPRK in malignant glioma cell lines suppressed cell growth and migration by inhibiting EGFR and β-catenin signaling and improved the effect of conventional therapies for glioma. However, PTPRK mutations abrogated tumor suppressive effects of wild-type PTPRK and altered sensitivity of glioma cells to chemotherapy.</p></div

    A common polymorphism in the bile acid receptor farnesoid X receptor is associated with decreased hepatic target gene expression

    No full text
    The farnesoid X receptor (FXR or NR1H4) is an important bile-acid-activated, transcriptional regulator of genes involved in bile acid, lipid, and glucose homeostasis. Accordingly, interindividual variations in FXR expression and function could manifest as variable susceptibility to conditions such as cholesterol gallstone disease, atherosclerosis, and diabetes. We performed an FXR polymorphism discovery analysis of European-, African-, Chinese-, and Hispanic-Americans and identified two rare gain-of-function variants and a common single nucleotide polymorphism resulting in a G-1T substitution in the nucleotide adjacent to the translation initiation site (FXR*1B) with population allelic frequencies ranging from 2.5 to 12%. In cell-based transactivation assays, FXR*1B (-1T) activity was reduced compared with FXR*1A (-1G). This reduced activity for FXR*1B resulted from neither decreased translational efficiency nor the potential formation of a truncated translational variant. To further define the relevance of this polymorphism, gene expression was examined in a human liver bank to reveal that levels of the FXR target genes small heterodimer partner and organic anion transporting polypeptide 1B3 were significantly reduced in livers harboring an FXR*1B allele. These findings are the first to identify the presence of a common genetic variant in FXR with functional consequences that could contribute to disease risk or therapeutic outcomes
    corecore