36 research outputs found

    Svojstva bukovine obrađene akrilnim premazom koji sadržava UV stabilizatore dihidroksi-benzofenon i nano cinkov oksid nakon izlaganja vremenskim utjecajima

    Get PDF
    In this study, the effect of UV stabilizers (dihydroxy benzophenone and nano zinc oxide) on the weathering degradation of water-based acrylic coating on beech wood was investigated. The wood specimens were coated by brush and then weathered naturally for six months. The obtained results showed that the use of nano zinc oxide reduced color changes and mold growth on the surface of weathered samples. However, the results of contact angle, pull-off adhesion, colorimeter and FTIR revealed that the dihydroxyl benzophenone was not effective in preventing weathering degradation of coated wood.U radu se prikazuje istraživanje utjecaja UV stabilizatora (dihidroksi-benzofenona i nano cinkova oksida) na razgradnju vodenoga akrilnog premaza na bukovini koja je bila izložena vremenskim utjecajima. Uzorci drva premazani su kistom, a potom su šest mjeseci prirodno izloženi vremenskim utjecajima. Dobiveni su rezultati pokazali da nano cinkov oksid smanjuje promjenu boje i pojavu plijesni na površini izloženih uzoraka. Međutim, rezultati kontaktnog kuta, adhezije, kolorimetrije i FTIR analize potvrđuju da dihidroksi-benzofenon nije učinkovit u sprečavanju razgradnje premazanog drva

    Evaluation of degradation in chemical compounds of wood in historical buildings using ft-ir and ft-raman vibrational spectroscopy

    Get PDF
    Vibrational spectroscopy approaches like FT-IR and FT-Raman, as analytical method, can be used to assess chemical changes in historical wood structures. In this study, wood samples of three historical buildings, in Gorgan, Iran, namely Tekie Estebar, Molla Esmaiel Mosque, and the Esmaieli Buildings were selected. Wood species was determined by their macroscopic characteristics which were hornbeam (Carpinus betulus), oak (Quercus castaneifolia), beech (Fagus orientalis), and elm (Ulmus glabra), as hardwood species, and yew (Taxus baccata) as a softwood species. Also, some samples of oak were collected from northern and southern sides of the Esmaieli Building in order to compare deterioration environmental factors.. The approximate assignment of the experimental bands was completed by comparing. For this purpose, the experimental bands with the calculated band frequencies of cellulose, hemicellulose and lignin. In addition, the reported assignment for softwood and hardwood was used to confirm the vibrational assignments. The results of spectroscopy revealed that biodegradation had occurred in all species. Comparison between the most important vibrational band frequencies related to carbohydrates and lignin in hardwood species suggested that degradation of carbohydrates was greater than lignin, which could be attributed to brown rot and hydrolysis. Reduction of chemical compounds in south oak samples was higher and could be associated with prevailing wind and UV ray in this side. In the only softwood species (yew), because of its highest exposure to frequent raining, deterioration was observed in both carbohydrates and lignin

    Therapeutic capsule endoscopy: Opportunities and challenges

    Get PDF
    ABSTRACT The increasing demand for non-invasive (or less-invasive) monitoring and treatment of medical conditions has attracted both physicians and engineers to work together and investigate new methodologies. Wireless capsule endoscopy is a successful example of such techniques which has become an accepted routine for diagnostic inspection of the gastrointestinal tract. This method offers a non-invasive alternative to traditional endoscopy and provides the opportunity for exploring distal areas of the small intestine which are otherwise not accessible. Despite these advantages, wireless capsule endoscopy is still limited in functionality compared to traditional endoscopy. Wireless capsule endoscopes with advanced functionalities, such as biopsy or drug delivery, are highly desirable. In this article, the current status of wireless capsule endoscopy is reviewed together with some of its possible therapeutic applications as well as the existing challenges

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    NEUROMORPHIC TACTILE PERCEPTION FOR PROSTHETIC AND ROBOTIC APPLICATIONS

    No full text
    Ph.DDOCTOR OF PHILOSOPH

    Impedimetric immunosensor based on humidity sensing properties of BST composite film

    No full text
    In this project, a label-free impedimetric immunosensor with a signal amplification mechanism based on humidity sensing properties of Barium Strontium Titanate (BST) composite film has been developed. The immunosensor was constructed as a capacitor structure. A layer of BST composite film was deposited onto a platinum coated silicon substrate, and then were modified by Poly(TMS-r-NHSMA) [TMS: 3-(trimethoxysilyl)propyl methacrylate; NHSMA: N-hydroxysuccinimide methacrylate] as a functionalized polymer to be able to bind to bio-molecules covalently. To demonstrate the sensing capability of this structure, Bovine Serum Albumin (BSA) protein was immobilized on the surface to detect its conjugate protein, anti-BSA, as a target analyte. The sample was then exposed to Phosphate Buffer Solution (PBS) buffer solution containing anti-BSA protein so that anti-BSA could bind with the immobilized BSA to form the antigen-antibody complex. The electrochemical detection was finally achieved by impedance spectroscopy after applying a drop of DI water between a top gold electrode and the sample as the bottom electrode. It was observed that the formation of biorecognition complex could change the impedance of the system. Higher concentrations of anti-BSA could result in higher impedance values. These impedance increments (The sensing capability) were attributed to three parallel mechanisms upon the biorecognition reaction. First, the interfacial impedance of the system increases. Formation of the antigen-antibody complex reduces the charges transfer at the solid/liquid interface, and hence, results in an increase in the electron transfer resistance of the system. Moreover, the thickness of the interfacial layer also increases which causes a decrease in capacitance of the double layer and hence an increase in the interfacial impedance of the system. Second, impedance of the DI water increases. BST is a highly polar material which can dissociate water molecules into H+ and OH- ions. Immobilized biomolecules could prevent the water molecules from contacting BST grains and induce less water molecules to dissociate into mobile ions. This will result in a decrease in amount of charge carriers, and hence, an increase in the impedance of the DI water. Third, impedance of the BST composite film also increases when DI water is prevented from penetrating into the BST structure. This is due to the fact that the BST film is a humidity sensor and shows higher impedance for lower water contents. The proposed immunosensor seems to be a good alternative to the conventional electrochemical immunosensors by utilizing two signal amplification mechanisms without using the harmful redox labels. Moreover, the proposed structure might be useful for detection of different analytes since the applied functionalized polymer is capable of immobilizing different proteins.MASTER OF ENGINEERING (EEE
    corecore