11 research outputs found

    Effects of Row Spacings and Varieties on Grain Yield and Economics of Maize

    Full text link
    Maize is the second most important crop of Nepal. The yield of the crop is low due to lack of appropriate plant density for the varieties. The field experiment was carried out to study the effect of different row spacings on different maize varieties at Deupur, Lamahi municipality of the dang district in province No. 5, Nepal during the rainy season from June to September, 2018. Four levels of spacings (boardcasting and three row spacings of 45, 60 and 75 cm) and two maize varieties (Rampur Composite and Arun-2) were evaluated using randomized complete block design with three replications. The highest grain yield was found in Rampur Composite and Arun-2 while they were planted with row spacing of 60 cm with plant to plant spacing of 25 cm. The highest grain yield, cob length, cob circumference, number of rows per cob, thousand grain weight  were reported when maize was planted in the  row spacing 60Ă—25cm. Among the maize varieties, Rampur Composite produced the highest grain yield, cob length, cob circumference, number of rows per cob as compared to Arun-2. This study suggested that maize production can be maximized by cultivating maize varieties with row spacing of 60 cm with plant to plant spacing of 25 cm

    Vegetal fibers in polymeric composites: a review

    Full text link

    Effect of Different Levels of Nitrogen on Growth and Yield of Hybrid Maize (Zea Mays L.) Varieties

    Full text link
    Nitrogen (N) fertilizer is considered as one of the most important factors affecting growth and grain yield of hybrid maize. This study was conducted to determine the effects of different rates of nitrogen and varieties on growth and yield of hybrid maize in Lamahi Municipality, Dang, Nepal from June to October, 2019. Three levels of hybrid maize varieties (10V10, Rajkumar F1 and NMH-731) and four levels of nitrogen (160, 180, 200 and 220 kg N ha-1) were evaluated using two factorial randomized complete block design with three replications. The results showed that grain yield and yield attributing traits of hybrid maize varieties increased with the increasing level of nitrogen from 160 to 220 kg ha-1. The application of nitrogen @ 220 kg N ha-1 produced the highest grain yield (10.07 t ha-1), cob length (16.33 cm), no of rows per cob (14.97), no of grains per row (33.37), cob diameter (4.54), thousand grain weight (276.77 g), stover yield (12.91 t ha-1), biological yield (23.00 t ha-1), harvest index (43.80), gross return (NRs. 208940 ha-1), net return (NRs.104488 ha-1) and B:C ratio (2.001). The hybrid maize variety 10V10 produced the highest grain yield (9.35 t ha-1), net returns (NRs. 91740.66 ha-1) and B:C ratio (1.91) accompanied by the highest cob length (16.25 cm), and as number of grains per row (32.35) as compared to other varieties. This study suggested that maize production can be maximized by cultivating hybrid maize variety 10V10 with the use of 220 kg N ha-1 in inner Terai region of Nepal

    Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India

    No full text
    Twenty eight surface water samples were collected from fourteen sites of the West Bokaro coalfield, India. The concentration of Mn, Cu, Zn, Ni, As, Se, Al, Cr, Ba, and Fe were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) for determination of seasonal fluctuations and a heavy metal pollution index (HPI). The HPI values were below the critical pollution index value of 100. Metal concentrations were higher in the pre-monsoon season as compared to the post-monsoon season. The Zn, Ni, Mn, As, Se, Al, Ba, Cu, and Cr concentrations did not exceed the desirable limits for drinking water in either season. However, at many sites, concentrations of Fe were above the desirable limit of the WHO (2006) and Indian drinking water standard (BIS 2003) in both seasons. The water that contained higher concentrations of Fe would require treatment before domestic us

    HPI appraisal of concentrations of heavy metals in dynamic and static flow of Ganga River System

    No full text
    Ganga River system is a life support system to sustain the people of northeast region, India, by providing freshwater resource. In this study, the seasonal heavy metal concentrations of Ganga River system at Haridwar region (India) have been characterised for metal pollution. The collection of water samples was done from 10 different locations and analysed for various metal parameters (Zn, Pb, Mn, Fe, Cu, Si, Al, Ni, Cd, Mg and Co) using a standard laboratory procedures. The pollution level was assessed from the observed concentrations by using Heavy Metal Pollution Index (HPI) for nine heavy metals. The observed values of HPI were found lower than the Critical Pollution Index value of 100 (average value 78.62 and 81.18) during the study period. The concentration of Fe and Mg is exceeding the desirable limits of the World Health Organization, Bureau of Indian Standards and US Environmental Protection Agency in all water samples throughout the study period. The levels of all the metals were higher in the monsoon season and lower in the winter season. The Karl Pearson’s correlation matrix was developed by using the mean values of all parameters and showed the light intensity positively correlated with biochemical oxygen demand (BOD) and sulphate which indicate good microbial activity. Dissolved oxygen and BOD is found negatively correlated. From this study, it is easy to understand the various harmful effects of metal pollution to irrigation water and health of local people
    corecore