7 research outputs found

    Potential of microalgae as a sustainable feed ingredient for aquaculture

    Get PDF
    An increase in fish consumption, combined with a decrease in wild fish harvest, is driving the aquaculture industry at rapid pace. Today, farmed seafood accounts for about half of all global seafood demand for human consumption. As the aquaculture industry continues to grow, so does the market for aquafeed. Currently, some of the feed ingredients are coming from low-value forage fishes (fish meal) and terrestrial plants. The production of fish meal can’t be increased as it would affect the sustainability and ecosystem of the ocean. Similarly, increasing the production of terrestrial plant-based feed leads to deforestation and increased freshwater use. Hence, alternative and environmentally sustainable sources of feed ingredients need to be developed. Microalgae biomasses represent potential feed source ingredients as the cell metabolites of these microorganisms contain a blend of essential amino acids, healthy triglycerides as fat, vitamins, and pigments. In addition to serving as bulk ingredient in aquafeed, their unique array of bioactive compounds can increase the survivability of farmed species, improve coloration and quality of fillet. Microalgae has the highest areal biomass productivities among photosynthetic organisms, including fodder crops, and thus has a high commercial potential. Also, microalgal production has a low water and arable-land footprint, making microalgal-based feed environmentally sustainable. This review paper will explore the potential of producing microalgae biomass as an ingredient of aquaculture feed.publishedVersio

    An integrated inventory model with capacity constraint under order-size dependent trade credit, all-unit discount and partial backordering

    No full text
    In today’s competitive business situation, the supplier frequently offers his or her retailers a permissible delay period (i.e., trade credit) to stimulate sales. In addition, the capacity of any warehouse is limited in practice, thus the retailer needs an additional rented warehouse (RW) to store the excess units when the order quantity exceeds the capacity of the own warehouse (OW). Furthermore, with the globalization of the marketing policy, the supplier may provide the retailer with a discounted price if the quantity of purchase is large enough. Considering all of the factors mentioned above, in this paper we study an integrated inventory model with capacity constraint under order-size dependent trade credit and all-units discount. Shortages are allowed and partially backordered. In addition, the unit production cost, which is a function of the production rate, is considered. An algorithm is developed to determine the optimal production and replenishment policies for both the supplier and the retailer. Finally, numerical examples are presented to illustrate theoretical results. Sensitivity analysis of the major parameters are performed and some insights are obtained

    Utilization of nitrogen-rich agricultural waste streams by microalgae for the production of protein and value-added compounds

    No full text
    Current food and feed production practices via agricultural processes generate waste streams often rich in nitrogen. Conversion of the nitrogen in agricultural waste into valuable products would prevent environmental pollution and promote a circular economy. Nitrogen in agricultural waste could remain in both water-soluble and solid forms. While microalgae could utilize several forms of water-soluble nitrogen in protein-rich biomass, many agricultural wastes would require pretreatment steps so that nitrogen and other elements could be made available for microalgal consumption. In addition to nitrogen recovery, several microalgae could also produce other high-value metabolites (e.g., pigments, polyunsaturated fatty acids, etc.) using waste sources. This review explored the recent advances in microalgal cultivation using agricultural wastes to produce biomass rich in protein and other value-added metabolites for food and feed applications. Finally, the challenges and prospects of microalgal nitrogen recovery from various agricultural wastes are briefly discussed. 2023 Elsevier B.V.The authors would like to acknowledge the support of Qatar National Research Fund (QNRF, a member of Qatar Foundation) for providing the funding (under grant MME1-0910-190028 ) for this study.Scopu

    Nutrients and Energy Digestibility of Microalgal Biomass for Fish Feed Applications

    No full text
    Aquafeed accounts for at least 75–90% of aquaculture’s operating costs. Traditional aquafeed ingredients such as fishmeal, fish oil, and soybean meal are unsustainable; further, their increasing cost necessities developing alternative feed ingredients. Microalgae-based aquafeed is not only environmentally friendly, but it can also be cost-effective with proper optimization. In addition, the nutrition profile of microalgae is similar to that of many fishes. The digestibility of a feed is one of the most important factors to consider in feed formulation. A highly digestible feed can lower production costs, reduce feed waste, and reduce the risk of eutrophication. This review discusses the digestibility of various nutrients such as protein, lipid, carbohydrate, amino acids, and fatty acids (including omega-3 fatty acids), dry matter, and energy of various microalgae in fish. Other commonly used aquafeed ingredients were also compared to microalgae in terms of nutrient and energy digestibility in fish. The intrinsic characteristics of microalgae, biomass pretreatment, and feed preparation methods are all discussed as factors that contribute to the nutrient and energy digestibility of microalgae in fish. Furthermore, methods for increasing the digestibility of microalgal biomass in fish are suggested. Finally, the review concludes with the challenges and prospects of using microalgae as a fish feed in terms of digestibility

    The Potential of Marine Microalgae for the Production of Food, Feed, and Fuel (3F)

    Get PDF
    Whole-cell microalgae biomass and their specific metabolites are excellent sources of renewable and alternative feedstock for various products. In most cases, the content and quality of whole-cell biomass or specific microalgal metabolites could be produced by both fresh and marine microalgae strains. However, a large water footprint for freshwater microalgae strain is a big concern, especially if the biomass is intended for non-food applications. Therefore, if any marine microalgae could produce biomass of desired quality, it would have a competitive edge over freshwater microalgae. Apart from biofuels, recently, microalgal biomass has gained considerable attention as food ingredients for both humans and animals and feedstock for different bulk chemicals. In this regard, several technologies are being developed to utilize marine microalgae in the production of food, feed, and biofuels. Nevertheless, the production of suitable and cheap biomass feedstock using marine microalgae has faced several challenges associated with cultivation and downstream processing. This review will explore the potential pathways, associated challenges, and future directions of developing marine microalgae biomass-based food, feed, and fuels (3F)

    Potential of microalgae as a sustainable feed ingredient for aquaculture

    Get PDF
    An increase in fish consumption, combined with a decrease in wild fish harvest, is driving the aquaculture industry at rapid pace. Today, farmed seafood accounts for about half of all global seafood demand for human consumption. As the aquaculture industry continues to grow, so does the market for aquafeed. Currently, some of the feed ingredients are coming from low-value forage fishes (fish meal) and terrestrial plants. The production of fish meal can’t be increased as it would affect the sustainability and ecosystem of the ocean. Similarly, increasing the production of terrestrial plant-based feed leads to deforestation and increased freshwater use. Hence, alternative and environmentally sustainable sources of feed ingredients need to be developed. Microalgae biomasses represent potential feed source ingredients as the cell metabolites of these microorganisms contain a blend of essential amino acids, healthy triglycerides as fat, vitamins, and pigments. In addition to serving as bulk ingredient in aquafeed, their unique array of bioactive compounds can increase the survivability of farmed species, improve coloration and quality of fillet. Microalgae has the highest areal biomass productivities among photosynthetic organisms, including fodder crops, and thus has a high commercial potential. Also, microalgal production has a low water and arable-land footprint, making microalgal-based feed environmentally sustainable. This review paper will explore the potential of producing microalgae biomass as an ingredient of aquaculture feed

    A comparative physicochemical property assessment and techno-economic analysis of biolubricants produced using chemical modification and additive-based routes

    No full text
    Several edible and non-edible oil sources are currently being developed as renewable basestocks for biolubricant production. However, these feedstocks possess undesirable physicochemical properties limiting their lubricant applications. Chemical modification and additive-based routes could be used to modify their properties -suitable for different biolubricant applications. The first part of this study compares how the selected modifications affect the properties of the basestocks. Next, the techno-economic analysis (TEA) was conducted to study 4 selected biolubricants and a potential biolubricant derived from marine microalgae biomass. Oxidative stabilities of chemically modified biolubricants followed the order of epoxidation> triesterification> estolide. Pour points of triesters showed minimal increments and reduced for estolides, whereas epoxidation increased pour points. Estolides exhibit maximum kinematic viscosity increment among chemical modification routes, followed by TMP-transesterification and epoxidation. The oxidative stability of chemically modified biolubricants was higher than additized biolubricants; conversely, the viscosity increments and pour point reductions for additized biolubricants were higher than chemically modified biolubricants. TEA results show that the unit cost for producing 1-kg estolide was the highest among the chemical modification routes. The unit cost per kilogram of jatropha biolubricant produced using the additive-based route was lower than chemically modified biolubricants. Due to a high microalgal oil feedstock cost, the unit cost per kilogram of additized microalgae oil biolubricant was more than the unit cost of additized Jatropha oil. The techno-economic feasibility of biolubricant production from marine microalgal oil could be improved by adopting a biorefinery approach. 2022The authors would like to acknowledge the support of the Qatar National Research Fund (QNRF, a member of Qatar Foundation) for providing the funding (under grants UREP26-080-2-021 , MME01-0910-190028 ), and grant QUEX-QFQAQU-18/19-IDC ) for this study.Scopu
    corecore