15 research outputs found

    Modelling environmental risks and conceptualising ‘Responsible Innovation’ for nanotechnology enabled medical applications

    Get PDF
    Medical products based on nanomaterials can revolutionise disease diagnosis and management modalities via faster, non-invasive diagnostic techniques and targeted therapeutic delivery and will be used extensively in coming years. The central goal of this thesis was to understand environmental risks that could potentially arise from mass production and wider use of nanotechnology enabled medical products and to gather insights from experts’ perceptions on “Responsible Innovation”. The research presented here uses a mixed methods approach to answer the research questions. By applying probabilistic mass flow modelling concept, prospective environmental concentrations of nanomedicine was estimated and a preliminary environmental risk assessment was done using gold nanoparticles in medical applications (potential of commercialisation and marketed) as a case study. This demonstrated that environmental risks from gold nanoparticles for the two major compartments (sludge applied soil and water) is likely to be minimal in the near future. The second component of the research involved 38 interviews with academics and 28 interviews with representatives from regulatory bodies, industry and funding bodies to understand their perceptions on environmental hazards and risks from nanomedicine and their views on the meaning of the concept of “Responsible Innovation”. This revealed that risks from nanomedicine can be compared with risks from existing chemicals and that “Responsible Innovation” is a phrase which can be discussed based on an individual’s experience and discipline

    Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment

    Get PDF
    Background The use of gold nanoparticles (Au-NP) based medical applications is rising due to their unique physical and chemical properties. Diagnostic devices based on Au-NP are already available in the market or are in clinical trials and Au-NP based therapeutics and theranostics (combined diagnostic and treatment modality) are in the research and development phase. Currently, no information on Au-NP consumption, material flows to and concentrations in the environment are available. Therefore, we estimated prospective maximal consumption of Au-NP from medical applications in the UK and US. We then modelled the Au-NP flows post-use and predicted their environmental concentrations. Furthermore, we assessed the environment risks of Au-NP by comparing the predicted environmental concentrations (PECs) with ecological threshold (PNEC) values. Results The mean annual estimated consumption of Au-NP from medical applications is 540 kg for the UK and 2700 kg for the US. Among the modelled concentrations of Au-NP in environmental compartments, the mean annual PEC of Au-NP in sludge for both the UK and US was estimated at 124 and 145 ÎŒg kg−1, respectively. The mean PEC in surface water was estimated at 468 and 4.7 pg L−1, respectively for the UK and US. The NOEC value for the water compartment ranged from 0.12 up to 26,800 ÎŒg L−1, with most values in the range of 1000 ÎŒg L−1. Conclusion The results using the current set of data indicate that the environmental risk from Au-NP used in nanomedicine in surface waters and from agricultural use of biosolids is minimal in the near future, especially because we have used a worst-case use assessment. More Au-NP toxicity studies are needed for the soil compartment.ISSN:1477-315

    Partnership for Assessment of the Risks of Chemicals (PARC)

    No full text
    PARC (the EU Partnership for Assessment of the Risks of Chemicals) aims to develop next-generation chemical risk assessment to protect human health and the environment. It supports the European Union's Chemicals Strategy for Sustainability and the European Green Deal's “Zero pollution” ambition with new data, knowledge, methods and tools, expertise and networks

    A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment

    No full text
    Significant advances have been made in the development of Adverse Outcome Pathways (AOPs) over the last decade, mainly focused on the toxicity mechanisms of chemicals. These AOPs, although relevant to manufactured nanomaterials (MNs), do not currently capture the reported roles of size-associated properties of MNs on toxicity. Moreover, some AOs of relevance to airborne exposures to MNs such as lung inflammation and fibrosis shown in animal studies may not be targeted in routine regulatory decision making. The primary objective of the present study was to establish an approach to advance the development of AOPs of relevance to MNs using existing, publicly available, nanotoxicology literature. A systematic methodology was created for curating, organizing and applying the available literature for identifying key events (KEs). Using a case study approach, the study applied the available literature to build the biological plausibility for ‘tissue injury’, a KE of regulatory relevance to MNs. The results of the analysis reveal the various endpoints, assays and specific biological markers used for assessing and reporting tissue injury. The study elaborates on the limitations and opportunities of the current nanotoxicology literature and provides recommendations for the future reporting of nanotoxicology results that will expedite not only the development of AOPs for MNs but also aid in application of existing data for decision making
    corecore