114 research outputs found
Angular momenta creation in relativistic electron-positron plasma
Creation of angular momentum in a relativistic electron-positron plasma is
explored. It is shown that a chain of angular momentum carrying vortices is a
robust asymptotic state sustained by the generalized nonlinear Schrodinger
equation characteristic to the system. The results may suggest a possible
electromagnetic origin of angular momenta when it is applied to the MeV epoch
of the early Universe.Comment: 20 pages, 6 figure
Comparison of S=0 and S=1/2 Impurities in Haldane Chain Compound,
We present the effect of Zn (S=0) and Cu (S=1/2) substitution at the Ni site
of S=1 Haldane chain compound . Y NMR allows us to
measure the local magnetic susceptibility at different distances from the
defects. The Y NMR spectrum consists of one central peak and several
less intense satellite peaks. The shift of the central peak measures the
uniform susceptibility, which displays a Haldane gap 100 K and it
corresponds to an AF coupling J260 K between the near-neighbor Ni spins.
Zn or Cu substitution does not affect the Haldane gap. The satellites, which
are evenly distributed on the two sides of the central peak, probe the
antiferromagnetic staggered magnetization near the substituted site, which
decays exponentially. Its extension is found identical for both impurities and
corresponds accurately to the correlation length (T) determined by Monte
Carlo (QMC) simulations for the pure compound. In the case of non-magnetic Zn,
the temperature dependence of the induced magnetization is consistent with a
Curie law with an "effective" spin S=0.4 on each side of Zn, which is well
accounted by Quantum Monte Carlo computations of the spinless-defect-induced
magnetism. In the case of magnetic Cu, the similarity of the induced magnetism
to the Zn case implies a weak coupling of the Cu spin to the nearest- neighbor
Ni spins. The slight reductionin the induced polarization with respect to Zn is
reproduced by QMC computations by considering an antiferromagnetic coupling of
strength J'=0.1-0.2 J between the S=1/2 Cu-spin and nearest-neighbor Ni-spin.Comment: 15 pages, 18 figures, submitted to Physical Review
Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)
We present an extensive gallium NMR study of the geometrically frustrated
kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad
Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome
bi-layer susceptibility and separate the intrinsic properties due to the
geometric frustration from those related to the site dilution. Our major
findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a
maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%.
The maximum reveals the development of short range antiferromagnetic
correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out
of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in
the macroscopic susceptibility is associated to paramagnetic defects which stem
from the dilution of the kagome bi-layer. The low-T analysis of the NMR
lineshape suggests that the defect can be associated with a staggered
spin-response to the vacancies on the kagome bi-layer. This, altogether with
the maximum in the kagome bi-layer susceptibility, is very similar to what is
observed in most low-dimensional antiferromagnetic correlated systems; 4) The
spin glass-like freezing observed at T_g=2-4 K is not driven by the
dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor
modifications: Fig.11 and discussion in Sec.V on the NMR shif
Towards Noncommutative Fuzzy QED
We study in one-loop perturbation theory noncommutative fuzzy quenched QED_4.
We write down the effective action on fuzzy S**2 x S**2 and show the existence
of a gauge-invariant UV-IR mixing in the model in the large N planar limit. We
also give a derivation of the beta function and comment on the limit of large
mass of the normal scalar fields. We also discuss topology change in this 4
fuzzy dimensions arising from the interaction of fields (matrices) with
spacetime through its noncommutativity.Comment: 33 page
Planar 17O NMR study of Pr_yY_{1-y}Ba_2Cu_3O_{6+x}
We report the planar ^{17}O NMR shift in Pr substituted YBa_{2}Cu_{3}O_{6+x},
which at x=1 exhibits a characteristic pseudogap temperature dependence,
confirming that Pr reduces the concentration of mobile holes in the CuO_{2}
planes. Our estimate of the rate of this counterdoping effect, obtained by
comparison with the shift in pure samples with reduced oxygen content, is found
insufficient to explain the observed reduction of T_c. From the temperature
dependent magnetic broadening of the ^{17}O NMR we conclude that the Pr moment
and the local magnetic defect induced in the CuO_2 planes produce a long range
spin polarization in the planes, which is likely associated with the extra
reduction of T_c. We find a qualitatively different behaviour in the oxygen
depleted Pr_yY_{1-y}Ba_2Cu_3O_{6.6}, i.e. the suppression of T is nearly
the same, but the magnetic broadening of the ^{17}O NMR appears weaker. This
difference may signal a weaker coupling of the Pr to the planes in the
underdoped compound, which might be linked with the larger Pr to CuO_2 plane
distance, and correspondingly weaker hybridization.Comment: 8 pages, 9 figures, accepted in Phys Rev
A meta-analysis of genome-wide association studies of growth differentiation Factor-15 concentration in blood
Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the“COPI-mediated anterograde transport” gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Social-ecological, motivational and volitional factors for initiating and maintaining physical activity in the context of HIV
Sport and exercise can have several health benefits for people living with HIV. These benefits can be achieved through different types of physical activity, adapting to disease progression, motivation and social-ecological options. However, physical activity levels and adherence to exercise are generally low in people living with HIV. At the same time, high drop-out rates in intervention studies are prevalent; even though they often entail more favourable conditions than interventions in the natural settings. Thus, in the framework of an intervention study, the present study aims to explore social-ecological, motivational and volitional correlates of South African women living with HIV with regard to physical activity and participation in a sport and exercise health promotion programme. The qualitative data was produced in the framework of a non-randomised pre-post intervention study that evaluated structure, processes and outcomes of a 10-week sport and exercise programme. All 25 participants of the programme were included in this analysis, independent of compliance. Data was produced through questionnaires, participatory group discussions, body image pictures, research diaries and individual semi-structured interviews. All participants lived in a low socioeconomic, disadvantaged setting. Hence, the psychological correlates are contextualised and social-ecological influences on perception and behaviour are discussed. The results show the importance of considering social-cultural and environmental influences on individual motives, perceptions and expectancies, the fear of disclosure and stigmatisation, sport and exercise-specific group dynamics and self-supporting processes. Opportunities and strategies to augment physical activity and participation in sport and exercise programmes in the context of HIV are discussed.Scopu
Production of Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision
We present the first data on pair production accompanied by nuclear
breakup in ultra-peripheral gold-gold collisions at a center of mass energy of
200 GeV per nucleon pair. The nuclear breakup requirement selects events at
small impact parameters, where higher-order corrections to the pair production
cross section should be enhanced. We compare the pair kinematic distributions
with two calculations: one based on the equivalent photon approximation, and
the other using lowest-order quantum electrodynamics (QED); the latter includes
the photon virtuality. The cross section, pair mass, rapidity and angular
distributions are in good agreement with both calculations. The pair transverse
momentum, , spectrum agrees with the QED calculation, but not with the
equivalent photon approach. We set limits on higher-order contributions to the
cross section. The and spectra are similar, with no evidence
for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in
Phys. Rev.
The impact of low-frequency and rare variants on lipid levels
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing
- …