3,999 research outputs found

    Shocks in sand flowing in a silo

    Full text link
    We study the formation of shocks on the surface of a granular material draining through an orifice at the bottom of a quasi-two dimensional silo. At high flow rates, the surface is observed to deviate strongly from a smooth linear inclined profile giving way to a sharp discontinuity in the height of the surface near the bottom of the incline, the typical response of a choking flow such as encountered in a hydraulic jump in a Newtonian fluid like water. We present experimental results that characterize the conditions for the existence of such a jump, describe its structure and give an explanation for its occurrence.Comment: 5 pages, 7 figure

    Graphoidal Tree d - Cover

    Get PDF
    Acharya and Sampathkumar defined a graphoidal cover as a partition of edges into internally disjoint (not necessarily open) paths. If we consider only open paths in the above definition then we call it as a graphoidal path cover

    System reliability and risk assessment task goals and status

    Get PDF
    The major focus for continued development of the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) codes is in support of system testing and certification of advanced propulsion systems. Propulsion system testing has evolved over the years from tests designed to show success, to tests designed to reveal reliability issues before service use. Such test conditions as performance envelope corners, high rotor imbalance, power dwells, and overspeed tests are designed to shake out problems that can be associated with low and high cycle fatigue, creep, and stress rupture, bearing durability, and the like. Subsystem testing supports system certification by standing as an early evaluation of the same durability and reliability concerns as for the entire system. The NESSUS software system is being further developed to support the definition of rigorous subsystem and system test definition and reliability certification. The principal technical issues are outlined which are related to system reliability, including key technology issues such as failure mode synergism, sequential failure mechanisms, and fault tree definition

    Spatial control of irreversible protein aggregation

    Get PDF
    Liquid cellular compartments spatially segregate from the cytoplasm and can regulate aberrant protein aggregation, a process linked to several medical conditions, including Alzheimer's and Parkinson's diseases. Yet the mechanisms by which these droplet-like compartments affect protein aggregation remain unknown. Here, we combine kinetic theory of protein aggregation and liquid-liquid phase separation to study the spatial control of irreversible protein aggregation in the presence of liquid compartments. We find that, even for weak interactions between the compartment constituents and the aggregating monomers, aggregates are strongly enriched inside the liquid compartment relative to the surrounding cytoplasm. We show that this enrichment is caused by a positive feedback mechanism of aggregate nucleation and growth which is mediated by a flux maintaining the phase equilibrium between the compartment and the cytoplasm. Our model predicts that the compartment volume that maximizes aggregate enrichment in the compartment is determined by the reaction orders of aggregate nucleation. The underlying mechanism of aggregate enrichment could be used to confine cytotoxic protein aggregates inside droplet-like compartments suggesting potential new avenues against aberrant protein aggregation. Our findings could also represent a common mechanism for the spatial control of irreversible chemical reactions in general

    Transitions to Nematic states in homogeneous suspensions of high aspect ratio magnetic rods

    Full text link
    Isotropic-Nematic and Nematic-Nematic transitions from a homogeneous base state of a suspension of high aspect ratio, rod-like magnetic particles are studied for both Maier-Saupe and the Onsager excluded volume potentials. A combination of classical linear stability and asymptotic analyses provides insight into possible nematic states emanating from both the isotropic and nematic non-polarized equilibrium states. Local analytical results close to critical points in conjunction with global numerical results (Bhandar, 2002) yields a unified picture of the bifurcation diagram and provides a convenient base state to study effects of external orienting fields.Comment: 3 Figure
    corecore