Graphoidal Tree d - Cover

S.SOMASUNDARAM
(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, India)

A.NAGARAJAN
(Department of Mathematics, V.O. Chidambaram College, Tuticorin 628 008, India)

G.MAHADEVAN

(Department of Mathematics, Gandhigram Rural University, Gandhigram 624 302, India)
E-mail: gmaha2003@yahoo.co.in

Abstract

In [1] Acharya and Sampathkumar defined a graphoidal cover as a partition of edges into internally disjoint (not necessarily open) paths. If we consider only open paths in the above definition then we call it as a graphoidal path cover [3]. Generally, a Smarandache graphoidal tree (k, d)-cover of a graph G is a partition of edges of G into trees $T_{1}, T_{2}, \cdots, T_{l}$ such that $\left|E\left(T_{i}\right) \cap E\left(T_{j}\right)\right| \leq k$ and $\left|T_{i}\right| \leq d$ for integers $1 \leq i, j \leq l$. Particularly, if $k=0$, then such a tree is called a graphoidal tree d-cover of G. In [3] a graphoidal tree cover has been defined as a partition of edges into internally disjoint trees. Here we define a graphoidal tree d-cover as a partition of edges into internally disjoint trees in which each tree has a maximum degree bounded by d. The minimum cardinality of such d-covers is denoted by $\gamma_{T}^{(d)}(G)$. Clearly a graphoidal tree 2 -cover is a graphoidal cover. We find $\gamma_{T}^{(d)}(G)$ for some standard graphs.

Key Words: Smarandache graphoidal tree (k, d)-cover, graphoidal tree d-cover, graphoidal cover.

AMS(2000): 05C70

§1. Introduction

Throughout this paper G stands for simple undirected graph with p vertices and q edges. For other notations and terminology we follow [2]. A Smarandache graphoidal tree (k, d)-cover of G is a partition of edges of G into trees $T_{1}, T_{2}, \cdots, T_{l}$ such that $\left|E\left(T_{i}\right) \cap E\left(T_{j}\right)\right| \leq k$ and $\left|T_{i}\right| \leq d$ for integers $1 \leq i, j \leq l$. Particularly, if $k=0$, then such a cover is called a graphoidal tree d-cover of G. A graphoidal tree d-cover $(d \geq 2) \mathscr{F}$ of G is a collection of non-trivial trees in G such that
(i) Every vertex is an internal vertex of at most one tree;
(ii) Every edge is in exactly one tree;
(iii) For every tree $T \in \mathscr{F}, \Delta(T) \leq d$.

[^0]Let \mathscr{G} denote the set of all graphoidal tree d-covers of G. Since $E(G)$ is a graphoidal tree d-cover, we have $\mathscr{G} \neq \emptyset$. Let $\gamma_{T}^{(d)}(G)=\min _{\mathscr{J} \in \mathscr{G}}|\mathscr{J}|$. Then $\gamma_{T}^{(d)}(G)$ is called the graphoidal tree d-covering number of G. Any graphoidal tree d-cover of G for which $|\mathscr{J}|=\gamma_{T}^{(d)}(G)$ is called a minimum graphoidal tree d-cover.

A graphoidal tree cover of G is a collection of non-trivial trees in G satisfying (i) and (ii). The minimum cardinality of graphoidal tree covers is denoted by $\gamma_{T}(G)$. A graphoidal path cover (or acyclic graphoidal cover in [5]) is a collection of non-trivial path in G such that every vertex is an internal vertex of at most one path and every edge is in exactly one path. Clearly a graphoidal tree 2 -cover is a graphoidal path cover and a graphoidal tree d-cover ($d \geq \Delta)$ is a graphoidal tree cover. Note that $\gamma_{T}(G) \leq \gamma_{T}^{(d)}(G)$ for all $d \geq 2$. It is observe that $\gamma_{T}^{(d)}(G) \geq \Delta-d+1$.

§2. Preliminaries

Theorem 2.1([4]) $\quad \gamma_{T}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.
Theorem 2.2([4]) $\quad \gamma_{T}\left(K_{n, n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$.
Theorem 2.3([4]) If $m \leq n<2 m-3$, then $\gamma_{T}\left(K_{m, n}\right)=\left\lceil\frac{m+n}{3}\right\rceil$. Further more, if $n>2 m-3$, then $\gamma_{T}\left(K_{m, n}\right)=m$.

Theorem 2.4([4]) $\gamma_{T}\left(C_{m} \times C_{n}\right)=3$ if $m, n \geq 3$.
Theorem 2.5([4]) $\gamma_{T}(G) \leq\left\lceil\frac{p}{2}\right\rceil$ if $\delta(G) \geq \frac{p}{2}$.

§3. Main results

We first determine a lower bound for $\gamma_{T}(d)(G)$. Define $n_{d}=\min _{\mathscr{J} \in \mathscr{G}_{d}} n_{\mathscr{J}}$, where \mathscr{G}_{d} is a collection of all graphoidal tree d-covers and $n_{\mathscr{J}}$ is the number of vertices which are not internal vertices of any tree in \mathscr{J}.

Theorem 3.1 For $d \geq 2, \gamma_{T}(d)(G) \geq q-\left(p-n_{d}\right)(d-1)$.
Proof Let Ψ be a minimum graphoidal tree d-cover of G such that n vertices of G are not internal in any tree of Ψ.

Let k be the number of trees in Ψ having more than one edge. For a tree in Ψ having more than one edge, fix a root vertex which is not a pendant vertex. Assign direction to the edges of the k trees in such a way that the root vertex has in degree zero and every other vertex has in degree 1 . In Ψ, let l_{1} be the number of vertices of out degree d and l_{2} the number of vertices of out degree less than or equal to $d-1($ and $>0)$ in these k trees. Clearly $l_{1}+l_{2}$ is the number of internal vertices of trees in Ψ and so $l_{1}+l_{2}=p-n$. In each tree of Ψ there is at most one vertex of out degree d and so $l_{1} \leq k$. Hence we have

$$
\begin{aligned}
\gamma_{T}^{(d)} & \geq k+q-\left(l_{1} d+l_{2}(d-1)\right)=k+q-\left(l_{1}+l_{2}\right)(d-1) l_{1} \\
& =k+q-\left(p-n_{\Psi}\right)(d-1)-l_{1} \geq q-\left(p-n_{d}\right)(d-1)
\end{aligned}
$$

Corollary $3.2 \quad \gamma_{T}^{(d)}(G) \geq q-p(d-1)$.
Now we determine graphoidal tree d-covering number of a complete graph.

Theorem 3.3 For any integer $p \geq 4$,

$$
\gamma_{T}^{(d)}\left(K_{p}\right)=\left\{\begin{array}{cl}
\frac{p(p-2 d+1)}{2} & \text { if } d<\frac{p}{2} \\
\left\lceil\frac{p}{2}\right\rceil & \text { if } d \geq \frac{p}{2} .
\end{array}\right.
$$

Proof Let $d \geq \frac{p}{2}$. We know that $\gamma_{T}^{(d)}\left(K_{p}\right) \geq \gamma_{T}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$ by Theorem 2.1.
Case (i) Let p be even, say $p=2 k$. We write $V\left(K_{p}\right)=\{0,1,2, \cdots, 2 k-1\}$. Consider the graphoidal tree cover $\mathscr{J}_{1}=\left\{T_{1}, T_{2}, \cdots, T_{k}\right\}$, where each $T_{i}(i=1,2, \cdots, k)$ is a spanning tree with edge set defined by

$$
\begin{aligned}
E\left(T_{i}\right) & =\{(i-1, j): j=i, i+1, \cdots, i+k-1\} \\
& \cup\{(k+i-1, s): s \equiv j(\bmod 2 k), j=i+k, i+k+1, \cdots, i+2 k-2\}
\end{aligned}
$$

Now $\left|\mathscr{J}_{1}\right|=k=\frac{p}{2}$. Note that $\Delta\left(T_{i}\right)=k \leq d$ for $i=1,2, \cdots, k$ and hence $\gamma_{T}(d)\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.
Case (ii) Let p be odd, say $p=2 k+1$. We write $V\left(K_{p}\right)=\{0,1,2, \cdots, 2 k\}$. Consider the graphoidal tree cover $\mathscr{J}_{2}=\left\{T_{1}, T_{2}, \cdots, T_{k+1}\right\}$ where each $T_{i}(i=1,2, \cdots, k)$ is a tree with edge set defined by

$$
\begin{gathered}
E\left(T_{i}\right)=\{(i-1, j): j=i, i+1, \cdots, i+k-1\} \\
\cup\{(k+i-1, s): s \equiv j(\bmod 2 k+1), j=i+k, i+k+1, \cdots, i+2 k-1\} \\
E\left(T_{k+1}\right)=\{(2 k, j): j=0,1,2, \cdots, k-1\}
\end{gathered}
$$

Now $\left|\mathscr{J}_{2}\right|=k=\frac{p}{2}$. Note that the degree of every internal vertex of T_{i} is either k or $k+1$ and so $\Delta\left(T_{i}\right) \leq d, i=1,2, \cdots, k+1$. Hence $\gamma_{T}^{(d)}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$ if $d \geq \frac{p}{2}$.

Let $d<\frac{p}{2}$. By Corollary 3.2,

$$
\gamma_{T}^{(d)}\left(K_{p}\right) \geq q+p-p d=\frac{p(p-1)}{2}+p-p d=\frac{p(p-2 d+1)}{2}
$$

Remove the edges from each T_{i} in \mathscr{J}_{1} (or \mathscr{J}_{2}) when p is even (odd) so that every internal vertex is of degree d in the new tree T_{i}^{\prime} formed by this removal. The new trees so formed together with the removed edges form \mathscr{J}_{3}.

If p is even, then \mathscr{J}_{3} is constructed from \mathscr{J}_{1} and

$$
\left|\mathscr{J}_{3}\right|=k+q-k(2 d-1)=k+\frac{2 k(2 k-1)}{2}-k\left(2 d-10=k(2 k-2 d+1)=\frac{p(p-2 d+1)}{2} .\right.
$$

If p is odd, then \mathscr{J}_{3} is constructed from \mathscr{J}_{2} and
$\left|\mathscr{J}_{3}\right|=k+1+q-k(2 d-1)-d=k+1+\frac{2 k(2 k+1)}{2}-2 k d+k-d=(2 k+1)(1+k-d)=\frac{p(p-2 d+1)}{2}$.

Hence $\gamma_{T}^{(d)}\left(K_{p}\right)=\frac{p(p+1-2 d)}{2}$.
The following examples illustrate the above theorem.

Examples 3.4 Consider K_{6}. Take $d=3=\frac{p}{2}$ and $V\left(K_{6}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$.

Fig. 1
Whence $\gamma_{T}^{(3)}\left(K_{6}\right)=3$. Take $d=2<\frac{p}{2}$.

Fig. 2
Whence $\gamma_{T}^{(2)}\left(K_{6}\right)=\frac{6}{2}(6+1-2 \times 2)=9$.
Consider K_{7}. Take $d=4=\left\lceil\frac{p}{2}\right\rceil$ and $V\left(K_{7}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$.

Fig. 3
Whence, $\gamma_{T}^{(4)}=4=\left\lceil\frac{p}{2}\right\rceil$. Now take $d=3<\left\lceil\frac{p}{2}\right\rceil$.

Fig. 4
Therefore, $\gamma_{T}^{(3)}\left(K_{7}\right)=\frac{7}{2}(7+1-2 \times 3)=7$.
We now turn to some cases of complete bipartite graph.
Theorem 3.5 If $n, m \geq 2 d$, then $\gamma_{T}^{(d)}\left(K_{m, n}\right)=p+q-p d=m n-(m+n)(d-1)$.
Proof By theorem 3.2, $\gamma_{T}^{(d)}\left(K_{m, n}\right) \geq p+q-p d=m n-(m+n) d+m+n$. Consider $G=K_{2 d, 2 d}$. Let $V(G)=X_{1} \cup Y_{1}$, where $X_{1}=\left\{x_{1}, x_{2}, \cdots, x_{2 d}\right\}$ and $Y_{1}=\left\{y_{1}, y_{2}, \cdots, y_{2 d}\right\}$. Clearly $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(y_{j}\right)=2 d, 1 \leq i, j \leq 2 d$. For $1 \leq i \leq d$, we define

$$
\begin{aligned}
& T_{i}=\left\{\left(x_{i}, y_{j}\right): 1 \leq j \leq d\right\}, \quad T_{d+i}=\left\{\left(x_{i+d}, y_{j}\right): d+1 \leq j \leq 2 d\right\} \\
& T_{2 d+i}=\left\{\left(y_{i}, x_{j}\right): d+1 \leq j \leq 2 d\right\} \text { and } T_{3 d+i}=\left\{\left(y_{i+d}, x_{j}\right): 1 \leq j \leq d\right\}
\end{aligned}
$$

Clearly, $\mathscr{J}=\left\{T_{1}, T_{2}, \cdots, T_{4 d}\right\}$ is a graphoidal tree d-cover for G. Now consider $K_{m, n}, m, n \geq$ 2d. Let $V\left(K_{m, n}\right)=X \cup Y$, where $X=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$. Now for $4 d+1 \leq i \leq 4 d+m-2 d=m+2 d$, we define $T_{i}=\left\{\left(x_{i-2 d}, y_{j}\right): 1 \leq j \leq d\right\}$. For $m+2 d+1 \leq i \leq m+n$, we define $T_{i}=\left\{\left(y_{i-m}, x_{j}\right): 1 \leq j \leq d\right\}$. Then $\mathscr{J}^{\prime}=$ $\left\{T_{1}, T_{2}, \cdots, T_{4 d}, T_{4 d+1}, \cdots, T_{m+2 d}, T_{m+2 d+1}, \cdots, T_{m+n}\right\} \cup\left\{E(G)-\left[E\left(T_{i}\right): 1 \leq i \leq m+n\right]\right\}$ is a graphoidal tree d-cover for $K_{m, n}$. Hence $\left|\mathscr{J}^{\prime}\right|=p+q-p d$ and so $\gamma_{T}^{(d)}\left(K_{m, n}\right) \leq p+q-p d=$ $m n-(m+n)(d-1)$ for $m, n \geq 2 d$.

The following example illustrates the above theorem.
Example 3.6 Consider $K_{8,10}$ and take $d=4$.

Fig. 5
Whence, $\gamma_{T}^{(4)}=18+80-18 \times 4=26$.
Theorem 3.7 $\quad \gamma_{T}^{(d)}\left(K_{2 d-1,2 d-1}\right)=p+q-p d=2 d-1$.
Proof By Theorem 3.2, $\gamma_{T}^{(d)}\left(K_{2 d-1,2 d-1}\right) \geq p+q-p d=2 d-1$. For $1 \leq i \leq d-1$, we define

$$
T_{i}=\left\{\left(x_{i}, y_{j}\right): 1 \leq j \leq d\right\} \cup\left\{\left(y_{i}, x_{d+j}\right): 1 \leq j \leq d-1\right\} \cup\left\{\left(x_{d+i}, y_{d+j}\right): 1 \leq j \leq d-1\right\}
$$

Let $T_{d}=\left\{\left(x_{d}, y_{j}\right): 1 \leq j \leq d\right\} \cup\left\{\left(y_{d}, x_{d+j}\right): 1 \leq j \leq d-1\right\}$. For $d+1 \leq i \leq 2 d-1$, we define $T_{i}=\left\{\left(y_{i}, x_{j}\right): 1 \leq j \leq d\right\}$. Clearly $\mathscr{J}=\left\{T_{1}, T_{2}, \cdots, T_{2 d-1}\right\}$ is a graphoidal tree d-cover of G and so

$$
\gamma_{T}^{(d)}(G) \leq 2 d-1=(2 d-1)(2 d-1-2(d-1))=q+p-p d
$$

The following example illustrates the above theorem.
Example 3.8 Consider $K_{9,9}$ and $d=5$.

Fig. 6
Thereafter, $\gamma_{T}^{(5)}\left(K_{9,9}\right)=81+18-90=9$.
Lemma $3.9 \gamma_{T}^{(d)}\left(K_{3 r, 3 r}\right) \leq 2 r$, where $d \geq 2 r$ and $r \geq>1$.
Proof Let $V\left(K_{3 r, 3 r}\right)=X \cup Y$, where $X=\left\{x_{1}, x_{2}, \cdots, x_{3 r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \cdots, y_{3 r}\right\}$.
Case (i) r is even.
For $1 \leq s \leq r$, we define

$$
\begin{aligned}
T_{s} & =\left\{\left(x_{s}, y_{s+i}\right): 0 \leq i \leq r-1\right\} \cup\left\{\left(x_{s}, y_{2 r+s}\right)\right\} \cup\left\{\left(x_{r+s}, y_{2 r+s}\right)\right\} \cup\left\{\left(y_{2 r+s}, x_{2 r+s}\right)\right\} \\
& \cup\left\{\left(x_{i}, y_{2 r+s}\right): 1 \leq i \leq r, i \neq s\right\} \cup\left\{\left(x_{r+s}, y_{i}\right): r+s \leq i \leq 3 r, i \neq 2 r+s\right\} \\
& \cup\left\{\left(x_{r+s}, y_{i}\right): 1 \leq i \leq s-1, s \neq 1\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{r+s} & =\left\{\left(y_{s}, x_{s+i}\right): 1 \leq i \leq r\right\} \cup\left\{\left(y_{s}, x_{2 r+s}\right)\right\} \cup\left\{\left(y_{r+s}, x_{2 r+s}\right)\right\} \\
& \cup\left\{\left(y_{i}, x_{2 r+s}\right): 1 \leq i \leq r, i \neq s, 2 r+1 \leq i \leq 3 r, i \neq 2 r+s\right\} \\
& \cup\left\{\left(y_{r+s}, x_{i}\right): r+s+1 \leq i \leq 3 r, 1 \leq i \leq s, i \neq 2 r+s\right\}
\end{aligned}
$$

Then $\mathscr{J}_{1}=\left\{T_{1}, T_{2}, \cdots, T_{2 r}\right\}$ is a graphoidal tree d-cover for $K_{3 r, 3 r}, \Delta\left(T_{i}\right) \leq 2 r$ and $d \geq 2 r$. So we have, $\gamma_{T}^{(d)}\left({ }_{K 3 r, 3 r}\right) \leq 2 r$.

Case (ii) r is odd.

For $1 \leq s \leq r$, we define

$$
\begin{aligned}
T_{s}= & \left\{\left(x_{s}, y_{s+i}\right): 0 \leq i \leq 2 r-1\right\} \cup\left\{\left(y_{r+s}, x_{i}\right): r+1 \leq i \leq 3 r, i \neq r+s\right\} \\
& \cup\left\{\left(x_{2 r+s}, y_{i}\right): 2 r+s \leq i \leq 3 r\right\} \cup\left\{\left(x_{2 r+s}, y_{i}\right): 1 \leq i \leq s-1, s \neq 1\right\} \\
T_{r+s} & =\left\{\left(y_{s}, x_{s+i}\right): 1 \leq i \leq 2 r\right\} \cup\left\{\left(x_{r+s}, y_{i}\right): 2 r+1 \leq i \leq 3 r ; i=r+s\right\} \\
& \cup\left\{\left(y_{2 r+s}, x_{i}\right): 2 r+s+1 \leq i \leq 3 r, s \neq r\right\} \cup\left\{\left(y_{2 r+s}, x_{i}\right): 1 \leq i \leq s\right\}
\end{aligned}
$$

Clearly $\Delta\left(T_{i}\right) \leq 2 r$ for each i. In this case also $\mathscr{J}_{2}=\left\{T_{1}, T_{2}, \cdots, T_{2 r}\right\}$ is a graphoidal tree d-cover for $K_{3 r, 3 r}$ and so $\gamma_{T}^{(d)}\left(K_{3 r, 3 r}\right) \leq 2 r$ when r is odd.

The following example illustrates the above lemma for $r=2,3$. Consider $K_{6,6}$ and $K_{9,9}$.

Fig. 7

Fig. 8

Theorem $3.10 \gamma_{T}^{(d)}\left(K_{n, n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$ for $d \geq\left\lceil\frac{2 n}{3}\right\rceil$ and $n>3$.
Proof By Theorem 2.2, $\left\lceil\frac{2 n}{3}\right\rceil=\gamma_{T}\left(K_{n, n}\right)$ and $\gamma_{T}\left(K_{n, n}\right) \leq \gamma_{T}^{(d)}\left(K_{n, n}\right)$, it follows that $\gamma_{T}^{(d)}\left(K_{n, n}\right) \geq\left\lceil\frac{2 n}{3}\right\rceil$ for any n. Hence the result is true for $n \equiv 0(\bmod 3)$. Let $n \equiv 1(\bmod 3)$ so that $n=3 r+1$ for some r. Let $\mathscr{J}_{1}=\left\{T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{2 r}^{\prime}\right\}$ be a minimum graphoidal tree d-cover for $K_{3 r, 3 r}$ as in Lemma 3.9. For $1 \leq i \leq r$, we define
$T_{i}=T_{i}^{\prime} \cup\left\{\left(x_{i}, y_{3 r+1}\right)\right\}$,
$T_{r+i}=T_{r+i}^{\prime} \cup\left\{\left(y_{i}, x_{3 r+1}\right)\right\}$ and
$T_{2 r+1}=\left\{\left(x_{3 r+1}, y_{r+i}\right): 1 \leq i \leq 2 r+1\right\} \cup\left\{\left(y_{3 r+1}, x_{r+i}\right): 1 \leq i \leq 2 r\right\}$.
Clearly $\mathscr{J}_{2}=\left\{T_{1}, T_{2}, \cdots, T_{2 r+1}\right\}$ is a graphoidal tree d-cover for $K_{3 r+1,3 r+1}$, as $\Delta\left(T_{i}\right) \leq$ $2 r+1=\left\lceil\frac{2 n}{3}\right\rceil \leq d$ for each i. Hence $\gamma_{T}^{(d)}\left(K_{n, n}\right)=\gamma_{T}^{(d)}\left(K_{3 r+1,3 r+1}\right) \leq 2 r+1=\left\lceil\frac{2 n}{3}\right\rceil$.

Let $n \equiv 2(\bmod 3)$ and $n=3 r+2$ for some r. Let \mathscr{J}_{3} be a minimum graphoidal tree d-cover for $K_{3 r+1,3 r+1}$ as in the previous case. Let $\mathscr{J}_{3}=\left\{T_{1}, T_{2}, \cdots, T_{2 r+1}\right\}$. For $1 \leq i \leq r$, we define
$T_{i}^{\prime}=T_{i} \cup\left\{\left(x_{i}, y_{3 r+2}\right)\right\}$,
$T_{r+i}^{\prime}=T_{r+i} \cup\left\{\left(y_{i}, x_{3 r+2}\right)\right\}$,
$T_{2 r+1}^{\prime}=T_{2 r+1}$,
$T_{2 r+2}^{\prime}=\left\{\left(x_{3 r+2}, x_{r+i}\right): 1 \leq i \leq 2 r+2\right\} \cup\left\{\left(y_{3 r+2}, x_{r+i}\right): 1 \leq i \leq 2 r+1\right\}$.
Clearly, $\mathscr{J}_{4}=\left\{T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{2 r+2}^{\prime}\right\}$ is a graphoidal tree d-cover for $K_{3 r+2,3 r+2}$, as $\Delta\left(T_{i}^{\prime}\right) \leq$ $2 r+2=\left\lceil\frac{2 n}{3}\right\rceil \leq d$ for each i. Hence $\gamma_{T}^{(d)}\left(K_{n, n}\right)=\gamma_{T}^{(d)}\left(K_{3 r+2,3 r+2}\right) \leq 2 r+2=\left\lceil\frac{2 n}{3}\right\rceil$. Therefore, $\gamma_{T}^{(d)}\left(K_{n, n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$ for every n.

Now we turn to the case of trees.

Theorem 3.11 Let G be a tree and let $U=\{v \in V(G): \operatorname{deg}(v)-d>0\}$. Then $\gamma_{T}^{(d)}(G)=$ $\sum_{v \in V(G)} \chi_{U}(v)(\operatorname{deg}(v)-d)+1$, where $d \geq 2$ and $\chi_{U}(v)$ is the characteristic function of U.

Proof The proof is by induction on the number of vertices m whose degrees are greater than d. If $m=0$, then $\mathscr{J}=G$ is clearly a graphoidal tree d-cover. Hence the result is true in this case and $\gamma_{T}^{(d)}(G)=1$. Let $m>0$. Let $u \in V(G)$ with $\operatorname{deg}_{G}(u)=d+s(s>0)$. Now decompose G into $s+1$ trees $G_{1}, G_{2}, \cdots, G_{s}, G_{s+1}$ such that $\operatorname{deg}_{G_{i}}(u)=1$ for $1 \leq i \leq s$, $d e g_{G_{s+1}}(u)=d$. By induction hypothesis,

$$
\gamma_{T}^{(d)}\left(G_{i}\right)=\sum_{\operatorname{deg}_{G_{i}}(v)>d}\left(\operatorname{deg}_{G_{i}}-d\right)+1=k_{i}, \quad 1 \leq i \leq s+1
$$

Now \mathscr{J}_{i} is the minimum graphoidal tree d-cover of G_{i} and $\left|\mathscr{J}_{i}\right|=k_{i}$ for $1 \leq i \leq s+1$. Let $\mathscr{J}=\mathscr{J}_{1} \cup \mathscr{J}_{2} \cup \cdots \cup \mathscr{J}_{s+1}$.

Clearly \mathscr{J} is a graphoidal tree d-cover of G. By our choice of u, u is internal in only one tree T of \mathscr{J}. More over, $d e g_{T}(u)=d$ and $\operatorname{deg}_{G_{i}}(v)=\operatorname{deg}_{G}(v)$ for $v \neq u$ and $v \in V\left(G_{i}\right)$ for $1 \leq i \leq s+1$. Therefore,

$$
\begin{aligned}
\gamma_{T}^{(d)} & \leq|\mathscr{J}|=\sum_{i=1}^{s+1} k_{i}=\sum_{i=1}^{s+1}\left[\sum_{\operatorname{deg}_{G_{i}}(v)>d}\left(\operatorname{deg}_{G_{i}}(v)-d\right)+1\right] \\
& =\sum_{i=1}^{s+1}\left[\sum_{\operatorname{deg}_{G_{i}}(v)>d}\left(\operatorname{deg}_{G_{i}}(v)-d\right)\right]+s+1=\sum_{\operatorname{deg}_{G}(v)>d, v \neq u}\left(\operatorname{deg}_{G}(v)-d\right)+s+1 \\
& =\sum_{\operatorname{deg}_{G}(v)>d, v \neq u}\left(\operatorname{deg}_{G}(v)-d\right)+\left(\operatorname{deg}_{G}(u)-d\right)+1=\sum_{\operatorname{deg}_{G}(v)>d}\left(\operatorname{deg}_{G}(v)-d\right)+1 \\
& =\sum_{v \in V(G)} \chi_{U}(v)\left(\operatorname{deg}_{G}(v)-d\right)+1 .
\end{aligned}
$$

For each $v \in V(G)$ and $\operatorname{deg}_{G}(v)>d$ there are at least $\operatorname{deg}_{G}(v)-d+1$ subtrees of G in any graphoidal tree d-cover of G and so $\gamma_{T}^{(d)}(G) \geq \sum_{\operatorname{deg}_{G}(v)>d}\left(\operatorname{deg}_{G}(v)-d\right)+1$. Hence $\gamma_{T}^{(d)}(G)=\sum_{v \in V(G)} \chi_{U}(v)\left(\operatorname{deg}_{G}(v)-d\right)+1$.

Corollary 3.12 Let G be a tree in which degree of every vertex is either greater than or equal to d or equal to one. Then $\gamma_{T}^{(d)}(G)=m(d-1)-p(d-2)-1$, where m is the number of vertices of degree 1 and $d \geq 2$.

Proof Since all the vertices of G other than pendant vertices have degree d we have,

$$
\begin{aligned}
\gamma_{T}^{(d)} & =\sum_{v \in V(G)} \chi_{U}(v)\left(\operatorname{deg}_{G}(v)-d\right)+1=\sum_{v \in V(G)} \chi_{U}(v)\left(\operatorname{deg}_{G}(v)-d\right)+m d-m+1 \\
& =2 q-d p+m d-m+1=2 p-2-d p+m d-m+1 \quad \text { as } q=p-1) \\
& =m(d-1)-p(d-2)-1 .
\end{aligned}
$$

Recall that $n_{d}=\min _{\mathscr{J} \in \mathscr{G}_{d}} n_{\mathscr{J}}$ and $n=\min _{\mathscr{\mathscr { G }} \in \mathscr{G}} n_{\mathscr{F}}$, where \mathscr{G}_{d} is the collection of all graphoidal tree d-covers of G, \mathscr{G} is the collection of all graphoidal tree covers of G and $n_{\mathscr{F}}$ is the number of vertices which are not internal vertices of any tree in \mathscr{J}. Clearly $n_{d}=n$ if $d \geq \Delta$. Now we prove this for any $d \geq 2$.

Lemma 3.13 For any graph $G, n_{d}=n$ for any integer $d \geq 2$.
Proof Since every graphoidal tree d-cover is also a graphoidal tree cover for G, we have $n \leq n_{d}$. Let $\mathscr{J}=\left\{T_{1}, T_{2}, \cdots, T_{m}\right\}$ be any graphoidal tree cover of G. Let Ψ_{i} be a minimum graphoidal tree d - cover of $T_{i}(i=1,2, \cdots, m)$. Let $\Psi=\bigcup_{i=1}^{m} \Psi_{i}$. Clearly Ψ is a graphoidal tree d-cover of G. Let n_{Ψ} be the number of vertices which are not internal in any tree of Ψ. Clearly $n_{\Psi}=n_{\mathscr{J}}$. Therefore, $n_{d} \leq n_{\Psi}=n_{\mathscr{J}}$ for $\mathscr{J} \in \mathscr{G}$, where \mathscr{G} is the collection of graphoidal tree covers of G and so $n_{d} \leq n$. Hence $n=n_{d}$.

We have the following result for graphoidal path cover. This theorem is proved by S.

Arumugam and J. Suresh Suseela in [5]. We prove this, by deriving a minimum graphoidal path cover from a graphoidal tree cover of G.

Theorem 3.14 $\quad \gamma_{T}^{(2)}(G)=q-p+n_{2}$.
Proof From Theorem 3.1 it follows that $\gamma_{T}^{(2)}(G) \geq q-p+n_{2}$. Let \mathscr{J} be any graphoidal tree cover of G and $\mathscr{J}=\left\{T_{1}, T_{2}, \cdots, T_{k}\right\}$. Let Ψ_{i} be a minimum graphoidal tree d-cover of T_{i} $(i=1,2, \cdots, k)$. Let m_{i} be the number of vertices of degree 1 in $T_{i}(i=1,2, \cdots, k)$. Then by Theorem 3.12 it follows that $\gamma_{T}^{(2)}\left(T_{i}\right)=m_{i}-1$ for all $i=1,2, \cdots, k$. Consider the graphoidal tree 2-cover $\Psi_{\mathscr{J}}=\bigcup_{i=1}^{k} \Psi_{i}$ of G. Now

$$
\begin{aligned}
\left|\Psi_{\mathscr{J}}\right|=\sum_{i=1}^{k}\left|\Psi_{i}\right| & =\sum_{i=1}^{k}\left(m_{i}-1\right)=\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k} q_{i}-\sum_{i=1}^{k} p_{i} \\
& =q-\sum_{i=1}^{k} p_{i}+\sum_{i=1}^{k} m_{i} .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\sum_{i=1}^{k} p_{i} & =\sum_{i=1}^{k}\left(\text { numbers of internal vertices and pendant vertices of } T_{i}\right) \\
& =p-n_{\mathscr{J}}+\sum_{i=1}^{k} m_{i} .
\end{aligned}
$$

Therefore, $\left|\Psi_{\mathscr{f}}\right|=q-p+n$. Choose a graphoidal tree cover \mathscr{J} of G such that $n_{\mathscr{\mathscr { L }}}=n$. Then for the corresponding $\Psi_{\mathcal{F}}$ we have $\left|\Psi_{\mathcal{F}}\right|=q-p+n=q-p+n_{2}$, as $n_{2}=n$ by Lemma 3.13 .

Corollary 3.15 If every vertex is an internal vertex of a graphoidal tree cover, then $\gamma_{T}^{(2)}(G)=$ $q-p$.

Proof Clearly $n=0$ by definition. By Lemma 3.13, $n_{2}=n$. So we have $n_{2}=0$.
J. Suresh Suseela and S. Arumugam proved the following result in [5]. However, we prove the result using graphoidal tree cover.

Theorem 3.16 Let G be a unicyclic graph with r vertices of degree 1 . Let C be the unique cycle of G and let m denote the number of vertices of degree greater than 2 on C. Then
$\gamma_{T}^{(2)}(G)=\left\{\begin{array}{cl}2 & \text { if } m=0, \\ r+1 & m=1, \operatorname{deg}(v) \geq 3 \text { where } v \text { is the unique vertex of degree }>2 \text { on } C, \\ r & \text { oterwise } .\end{array}\right.$

Proof By Lemma 3.13 and Theorem 3.14, we have $\gamma_{T}^{(2)}(G)=q-p+n$. We have $q(G)=p(G)$ for unicyclic graph. So we have $\gamma_{T}^{(2)}(G)=n$. If $m=0$, then clearly $\gamma_{T}^{(2)}(G)=2$. Let $m=1$ and let v be the unique vertex of degree >2 on C. Let $e=v w$ be an edge on C. Clearly $\mathscr{J}=G-e, e$ is a minimum graphoidal tree cover for G and so $n \leq r+1$. Since there is a vertex of C which is not internal in a tree of a graphoidal tree cover, we have $n=r+1$. When $m=1, \gamma_{T}^{(2)}(G)=r+1$. Let $m \geq 2$. Let v and w be vertices of degree greater than 2 on C such that all vertices in a (v, w) - section of C other than v and w have degree 2. Let P denote this (v, w)-section. If P has length 1 . Then $P=(v, w)$. Clearly $\mathscr{J}=G-P, P$ is a graphoidal tree cover of G. Also $n=r$ and so $\gamma_{T}^{(2)}(G)=r$ when $m \geq 2$. Hence we get the theorem.

Theorem 3.17 Let G be a graph such that $\gamma_{T}^{(G)} \leq \delta(G)-d+1(\delta(G)>d \geq 2)$. Then $\gamma_{T}^{(d)}(G)=q-p(d-1)$.

Proof By Theorem 3.2, $\gamma_{T}^{(d)}(G) \geq q-p(d-1)$. Let \mathscr{J} be a minimum graphoidal tree cover of G. Since $\delta>\gamma_{T}(G)$, every vertex is an internal vertex of a tree in a graphoidal tree cover \mathscr{J}. Moreover, since $\delta \geq d+\delta_{T}(G)-1$ the degree of each internal vertex of a tree in \mathscr{J} is $\geq d$. Let Ψ_{i} be a minimum graphoidal tree d-cover of $T_{i}(i=1,2, \cdots, k)$. Let m_{i} be the number of vertices of degree 1 in $T_{i}(i=1,2, \cdots, k)$. Then by Corollary 3.12 , for $i=1,2, \cdots, k$ we have

$$
\gamma_{T}^{(2)}\left(T_{i}\right)=-p_{i}(d-2)+m_{i}(d-1)-1 .
$$

Consider the graphoidal tree d-cover $\Psi_{T}=\bigcup_{i=1}^{k} \Psi_{i}$ of G.

$$
\begin{aligned}
\left|\Psi_{T}\right| & =\left|\bigcup_{i=1}^{k} \Psi_{i}\right|=\sum_{i=1}^{k}\left(m_{i}(d-1)-p_{i}(d-2)-1\right) \\
& =\sum_{i=1}^{k}\left(m_{i}(d-1)-p_{i}(d-2)+q_{i}-p_{i}\right) \\
& =\sum_{i=1}^{k}\left[\left(m_{i}-p_{i}\right)(d-1)+q_{i}\right] \\
& =(d-1) \sum_{i=1}^{k}\left(m_{i}-p_{i}\right)+\sum_{i=1}^{k} q_{i} \\
& =(d-1) \sum_{i=1}^{k}\left(m_{i}-p_{i}\right)+q
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\sum_{i=1}^{k} p_{i} & =\sum_{i=1}^{k}\left(\text { numbers of internal vertices and pendant vertices of } T_{i}\right) \\
& =p+\sum_{i=1}^{k} m_{i}
\end{aligned}
$$

Therefore, $\left|\Psi_{T}\right|=-(d-1)+q$. In other words, $\gamma_{T}^{(d)}(G) \leq q-p(d-1)$. Hence, $\gamma_{T}^{(d)}(G)=$ $q-p(d-1)$

Corollary 3.18 Let G be a graph such that $\delta(G)=\left\lceil\frac{p}{2}\right\rceil+k$ where $k \geq 1$. Then $\gamma_{T}^{(d)}(G)=$ $q-p(d-1)$ for $d \leq k+1$.

Proof $\delta(G)-d+1=\left\lceil\frac{p}{2}\right\rceil+k-d+1 \geq\left\lceil\frac{p}{2}\right\rceil \geq \gamma_{T}(G)$ by Theorem 2.5. Applying Theorem 3.17, $\gamma_{T}^{(d)}(G)=q-p(d-1)$.

Corollary 3.19 Let G be an r-regular graph, where $r>\left\lceil\frac{p}{2}\right\rceil$. Then $\gamma_{T}^{(d)}(G)=q-p(d-1)$ for $d \leq r+1-\left\lceil\frac{p}{2}\right\rceil$.

Proof Here $\delta(G)=r$ and so the result follows from Corollary 3.18.
Corollary $3.20 \gamma_{T}^{(d)}\left(K_{m, n}\right)=q-p(d-1)$, where $2 \leq d \leq \frac{2 m-n}{3}$ and $6 \leq m \leq n \leq 2 m-6$.
Proof Consider

$$
\begin{aligned}
\delta(G)-d+1 & \geq m-\frac{2 m-n}{3}+1=\frac{3 m-2 m+n}{3}+1 \\
& =\frac{m+n}{3}+1 \geq\left\lceil\frac{m+n}{3}\right\rceil=\gamma_{T}\left(K_{m, n}\right)
\end{aligned}
$$

Hence by Corollary $3.18, \gamma_{T}^{(d)}\left(K_{m, n}\right)=q-p(d-1)$.
Theorem $3.21 \gamma_{T}^{(d)}\left(C_{m} \times C_{n}\right)=3$ for $d \geq 4$ and $\gamma_{T}^{(2)}\left(C_{m} \times C_{n}\right)=q-p$.
Proof For $d \geq \Delta(G)=4, \gamma_{T}^{(d)}\left(C_{m} \times C_{n}\right)=\gamma_{T}\left(C_{m} \times C_{n}\right)=3$ by Theorem 2.14. Since $\delta\left(C_{m} \times C_{n}\right)=4$ and $\gamma_{T}\left(C_{m} \times C_{n}\right)=3$, we have $\gamma_{T}\left(C_{m} \times C_{n}\right)=\delta(G)-d+1$ when $d=2$. Applying Theorem 3.17, $\gamma_{T}^{(2)}\left(C_{m} \times C_{n}\right)=q-p$.

References

[1] Acharya B.D., Sampathkumar E., Graphoidal covers and graphoidal covering number of a graph, Indian J.Pure Appl. Math., 18(10), 882-890, October 1987.
[2] Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969.
[3] Somasundaram, S., Nagarajan., A., Graphoidal tree cover, Acta Ciencia Indica, Vol.XXIIIM. No.2., (1997), 95-98.
[4] Suresh Suseela, J. Arumugam S., Acyclic graphoidal covers and path partitions in a graph, Discrete Math., 190 (1998), 67-77.

[^0]: ${ }^{1}$ Received March 6, 2009. Accepted June 5, 2009.

