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Abstract: In [1] Acharya and Sampathkumar defined a graphoidal cover as a partition of

edges into internally disjoint (not necessarily open) paths. If we consider only open paths in

the above definition then we call it as a graphoidal path cover [3]. Generally, a Smarandache

graphoidal tree (k, d)-cover of a graph G is a partition of edges of G into trees T1, T2, · · · , Tl

such that |E(Ti)∩E(Tj)| ≤ k and |Ti| ≤ d for integers 1 ≤ i, j ≤ l. Particularly, if k = 0, then

such a tree is called a graphoidal tree d-cover of G. In [3] a graphoidal tree cover has been

defined as a partition of edges into internally disjoint trees. Here we define a graphoidal

tree d-cover as a partition of edges into internally disjoint trees in which each tree has a

maximum degree bounded by d. The minimum cardinality of such d-covers is denoted by

γ
(d)
T (G). Clearly a graphoidal tree 2-cover is a graphoidal cover. We find γ

(d)
T (G) for some

standard graphs.

Key Words: Smarandache graphoidal tree (k, d)-cover, graphoidal tree d-cover,

graphoidal cover.
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§1. Introduction

Throughout this paper G stands for simple undirected graph with p vertices and q edges. For

other notations and terminology we follow [2]. A Smarandache graphoidal tree (k, d)-cover of G

is a partition of edges of G into trees T1, T2, · · · , Tl such that |E(Ti) ∩E(Tj)| ≤ k and |Ti| ≤ d

for integers 1 ≤ i, j ≤ l. Particularly, if k = 0, then such a cover is called a graphoidal tree

d-cover of G. A graphoidal tree d-cover (d ≥ 2) F of G is a collection of non-trivial trees in G

such that

(i) Every vertex is an internal vertex of at most one tree;

(ii) Every edge is in exactly one tree;

(iii) For every tree T ∈ F ,∆(T ) ≤ d.
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Let G denote the set of all graphoidal tree d-covers of G. Since E(G) is a graphoidal tree

d-cover, we have G 6= ∅. Let γ
(d)
T (G) = min

J∈G
|J |. Then γ

(d)
T (G) is called the graphoidal tree

d-covering number of G. Any graphoidal tree d-cover of G for which |J | = γ
(d)
T (G) is called a

minimum graphoidal tree d-cover.

A graphoidal tree cover of G is a collection of non-trivial trees in G satisfying (i) and

(ii). The minimum cardinality of graphoidal tree covers is denoted by γT (G). A graphoidal

path cover (or acyclic graphoidal cover in [5]) is a collection of non-trivial path in G such that

every vertex is an internal vertex of at most one path and every edge is in exactly one path.

Clearly a graphoidal tree 2-cover is a graphoidal path cover and a graphoidal tree d-cover (

d ≥ ∆ ) is a graphoidal tree cover. Note that γT (G) ≤ γ
(d)
T (G) for all d ≥ 2. It is observe that

γ
(d)
T (G) ≥ ∆ − d+ 1.

§2. Preliminaries

Theorem 2.1([4]) γT (Kp) = ⌈p
2⌉.

Theorem 2.2([4]) γT (Kn,n) = ⌈ 2n
3 ⌉.

Theorem 2.3([4]) If m ≤ n < 2m−3, then γT (Km,n) = ⌈m+n
3 ⌉. Further more, if n > 2m−3,

then γT (Km,n) = m.

Theorem 2.4([4]) γT (Cm × Cn) = 3 if m,n ≥ 3.

Theorem 2.5([4]) γT (G) ≤ ⌈p
2⌉ if δ(G) ≥ p

2 .

§3. Main results

We first determine a lower bound for γT (d)(G). Define nd = min
J∈Gd

nJ , where Gd is a collection

of all graphoidal tree d-covers and nJ is the number of vertices which are not internal vertices

of any tree in J .

Theorem 3.1 For d ≥ 2, γT (d)(G) ≥ q − (p− nd)(d− 1).

Proof Let Ψ be a minimum graphoidal tree d-cover of G such that n vertices of G are not

internal in any tree of Ψ.

Let k be the number of trees in Ψ having more than one edge. For a tree in Ψ having more

than one edge, fix a root vertex which is not a pendant vertex. Assign direction to the edges of

the k trees in such a way that the root vertex has in degree zero and every other vertex has in

degree 1. In Ψ, let l1 be the number of vertices of out degree d and l2 the number of vertices of

out degree less than or equal to d− 1 (and > 0) in these k trees. Clearly l1 + l2 is the number

of internal vertices of trees in Ψ and so l1 + l2 = p− n. In each tree of Ψ there is at most one

vertex of out degree d and so l1 ≤ k. Hence we have
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γ
(d)
T ≥ k + q − (l1d+ l2(d− 1)) = k + q − (l1 + l2)(d− 1)l1

= k + q − (p− nΨ)(d− 1) − l1 ≥ q − (p− nd)(d − 1).

�

Corollary 3.2 γ
(d)
T (G) ≥ q − p(d− 1).

Now we determine graphoidal tree d-covering number of a complete graph.

Theorem 3.3 For any integer p ≥ 4,

γ
(d)
T (Kp) =





p(p−2d+1)
2 if d < p

2 ;

⌈p
2⌉ if d ≥ p

2 .

Proof Let d ≥ p
2 . We know that γ

(d)
T (Kp) ≥ γT (Kp) = ⌈p

2⌉ by Theorem 2.1.

Case (i) Let p be even, say p = 2k. We write V (Kp) = {0, 1, 2, · · · , 2k − 1}. Consider the

graphoidal tree cover J1 = {T1, T2, · · · , Tk}, where each Ti ( i = 1, 2, · · · , k ) is a spanning

tree with edge set defined by

E(Ti) = {(i− 1, j) : j = i, i+ 1, · · · , i+ k − 1}
∪ {(k + i− 1, s) : s ≡ j(mod2k), j = i+ k, i+ k + 1, · · · , i+ 2k − 2}.

Now |J1| = k = p
2 . Note that ∆(Ti) = k ≤ d for i = 1, 2, · · · , k and hence γT (d)(Kp) = ⌈p

2⌉.

Case (ii) Let p be odd, say p = 2k + 1. We write V (Kp) = {0, 1, 2, · · · , 2k}. Consider the

graphoidal tree cover J2 = {T1, T2, · · · , Tk+1} where each Ti ( i = 1, 2, · · · , k ) is a tree with

edge set defined by

E(Ti) = {(i− 1, j) : j = i, i+ 1, · · · , i+ k − 1}
∪ {(k + i− 1, s) : s ≡ j(mod2k + 1), j = i+ k, i+ k + 1, · · · , i+ 2k − 1}.

E(Tk+1) = {(2k, j) : j = 0, 1, 2, · · · , k − 1}.

Now |J2| = k = p
2 . Note that the degree of every internal vertex of Ti is either k or k + 1

and so ∆(Ti) ≤ d, i = 1, 2, · · · , k + 1. Hence γ
(d)
T (Kp) = ⌈p

2⌉ if d ≥ p
2 .

Let d < p
2 . By Corollary 3.2,

γ
(d)
T (Kp) ≥ q + p− pd =

p(p− 1)

2
+ p− pd =

p(p− 2d+ 1)

2
.

Remove the edges from each Ti in J1 ( or J2 ) when p is even (odd) so that every internal

vertex is of degree d in the new tree T ′
i formed by this removal. The new trees so formed

together with the removed edges form J3.
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If p is even, then J3 is constructed from J1 and

|J3| = k + q − k(2d− 1) = k +
2k(2k − 1)

2
− k(2d− 10 = k(2k − 2d+ 1) =

p(p− 2d+ 1)

2
.

If p is odd, then J3 is constructed from J2 and

|J3| = k+1+q−k(2d−1)−d = k+1+
2k(2k+ 1)

2
−2kd+k−d = (2k+1)(1+k−d) =

p(p− 2d+ 1)

2
.

Hence γ
(d)
T (Kp) = p(p+1−2d)

2 . �

The following examples illustrate the above theorem.

Examples 3.4 Consider K6. Take d = 3 = p
2 and V (K6) = {v0, v1, v2, v3, v4, v5}.
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Whence γ
(3)
T (K6) = 3. Take d = 2 < p

2 .
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Whence γ
(2)
T (K6) = 6

2 (6 + 1 − 2 × 2) = 9.

Consider K7. Take d = 4 = ⌈p
2⌉ and V (K7) = {v0, v1, v2, v3, v4, v5, v6}.
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Whence, γ
(4)
T = 4 = ⌈p

2⌉. Now take d = 3 < ⌈p
2⌉.
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Therefore, γ
(3)
T (K7) = 7

2 (7 + 1 − 2 × 3) = 7.

We now turn to some cases of complete bipartite graph.

Theorem 3.5 If n,m ≥ 2d, then γ
(d)
T (Km,n) = p+ q − pd = mn− (m+ n)(d− 1).

Proof By theorem 3.2, γ
(d)
T (Km,n) ≥ p + q − pd = mn − (m + n)d + m + n. Consider

G = K2d,2d. Let V (G) = X1 ∪ Y1, where X1 = {x1, x2, · · · , x2d} and Y1 = {y1, y2, · · · , y2d}.
Clearly deg(xi) = deg(yj) = 2d, 1 ≤ i, j ≤ 2d. For 1 ≤ i ≤ d, we define

Ti = {(xi, yj) : 1 ≤ j ≤ d}, Td+i = {(xi+d, yj) : d+ 1 ≤ j ≤ 2d}

T2d+i = {(yi, xj) : d+ 1 ≤ j ≤ 2d} and T3d+i = {(yi+d, xj) : 1 ≤ j ≤ d}.

Clearly, J = {T1, T2, · · · , T4d} is a graphoidal tree d-cover forG. Now considerKm,n,m, n ≥
2d. Let V (Km,n) = X ∪ Y , where X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , yn}. Now

for 4d + 1 ≤ i ≤ 4d + m − 2d = m + 2d, we define Ti = {(xi−2d, yj) : 1 ≤ j ≤ d}.
For m + 2d + 1 ≤ i ≤ m + n, we define Ti = {(yi−m, xj) : 1 ≤ j ≤ d}. Then J ′ =

{T1, T2, · · · , T4d, T4d+1, · · · , Tm+2d, Tm+2d+1, · · · , Tm+n} ∪ {E(G) − [E(Ti) : 1 ≤ i ≤ m+ n]} is

a graphoidal tree d-cover for Km,n. Hence |J ′| = p+ q− pd and so γ
(d)
T (Km,n) ≤ p+ q− pd =

mn− (m+ n)(d− 1) for m,n ≥ 2d. �

The following example illustrates the above theorem.

Example 3.6 Consider K8,10 and take d = 4.
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Whence, γ
(4)
T = 18 + 80 − 18 × 4 = 26.

Theorem 3.7 γ
(d)
T (K2d−1,2d−1) = p+ q − pd = 2d− 1.

Proof By Theorem 3.2, γ
(d)
T (K2d−1,2d−1) ≥ p + q − pd = 2d − 1. For 1 ≤ i ≤ d − 1, we

define

Ti = {(xi, yj) : 1 ≤ j ≤ d} ∪ {(yi, xd+j) : 1 ≤ j ≤ d− 1} ∪ {(xd+i, yd+j) : 1 ≤ j ≤ d− 1}.

Let Td = {(xd, yj) : 1 ≤ j ≤ d} ∪ {(yd, xd+j) : 1 ≤ j ≤ d − 1}. For d+ 1 ≤ i ≤ 2d− 1, we

define Ti = {(yi, xj) : 1 ≤ j ≤ d}. Clearly J = {T1, T2, · · · , T2d−1} is a graphoidal tree d-cover

of G and so

γ
(d)
T (G) ≤ 2d− 1 = (2d− 1)(2d− 1 − 2(d− 1)) = q + p− pd.

�

The following example illustrates the above theorem.

Example 3.8 Consider K9,9 and d = 5.
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Thereafter, γ
(5)
T (K9,9) = 81 + 18 − 90 = 9.

Lemma 3.9 γ
(d)
T (K3r,3r) ≤ 2r, where d ≥ 2r and r ≥> 1.

Proof Let V (K3r,3r) = X ∪ Y , where X = {x1, x2, · · · , x3r} and Y = {y1, y2, · · · , y3r}.

Case (i) r is even.

For 1 ≤ s ≤ r, we define

Ts = {(xs, ys+i) : 0 ≤ i ≤ r − 1} ∪ {(xs, y2r+s)} ∪ {(xr+s, y2r+s)} ∪ {(y2r+s, x2r+s)}
∪ {(xi, y2r+s) : 1 ≤ i ≤ r, i 6= s} ∪ {(xr+s, yi) : r + s ≤ i ≤ 3r, i 6= 2r + s}
∪ {(xr+s, yi) : 1 ≤ i ≤ s− 1, s 6= 1}

and

Tr+s = {(ys, xs+i) : 1 ≤ i ≤ r} ∪ {(ys, x2r+s)} ∪ {(yr+s, x2r+s)}
∪ {(yi, x2r+s) : 1 ≤ i ≤ r, i 6= s, 2r + 1 ≤ i ≤ 3r, i 6= 2r + s}
∪ {(yr+s, xi) : r + s+ 1 ≤ i ≤ 3r, 1 ≤ i ≤ s, i 6= 2r + s}.

Then J1 = {T1, T2, · · · , T2r} is a graphoidal tree d-cover for K3r,3r, ∆(Ti) ≤ 2r and d ≥ 2r.

So we have, γ
(d)
T (K3r,3r) ≤ 2r.

Case (ii) r is odd.
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For 1 ≤ s ≤ r, we define

Ts = {(xs, ys+i) : 0 ≤ i ≤ 2r − 1} ∪ {(yr+s, xi) : r + 1 ≤ i ≤ 3r, i 6= r + s}
∪ {(x2r+s, yi) : 2r + s ≤ i ≤ 3r} ∪ {(x2r+s, yi) : 1 ≤ i ≤ s− 1, s 6= 1}

Tr+s = {(ys, xs+i) : 1 ≤ i ≤ 2r} ∪ {(xr+s, yi) : 2r + 1 ≤ i ≤ 3r; i = r + s}
∪ {(y2r+s, xi) : 2r + s+ 1 ≤ i ≤ 3r, s 6= r} ∪ {(y2r+s, xi) : 1 ≤ i ≤ s}.

Clearly ∆(Ti) ≤ 2r for each i. In this case also J2 = {T1, T2, · · · , T2r} is a graphoidal tree

d-cover for K3r,3r and so γ
(d)
T (K3r,3r) ≤ 2r when r is odd. �

The following example illustrates the above lemma for r = 2, 3. Consider K6,6 and K9,9.
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Theorem 3.10 γ
(d)
T (Kn,n) = ⌈ 2n

3 ⌉ for d ≥ ⌈ 2n
3 ⌉ and n > 3.

Proof By Theorem 2.2, ⌈ 2n
3 ⌉ = γT (Kn,n) and γT (Kn,n) ≤ γ

(d)
T (Kn,n), it follows that

γ
(d)
T (Kn,n) ≥ ⌈ 2n

3 ⌉ for any n. Hence the result is true for n ≡ 0(mod3). Let n ≡ 1(mod3) so

that n = 3r+ 1 for some r. Let J1 = {T ′
1, T

′
2, · · · , T ′

2r} be a minimum graphoidal tree d-cover

for K3r,3r as in Lemma 3.9. For 1 ≤ i ≤ r, we define

Ti = T ′
i ∪ {(xi, y3r+1)},

Tr+i = T ′
r+i ∪ {(yi, x3r+1)} and

T2r+1 = {(x3r+1, yr+i) : 1 ≤ i ≤ 2r + 1} ∪ {(y3r+1, xr+i) : 1 ≤ i ≤ 2r}.

Clearly J2 = {T1, T2, · · · , T2r+1} is a graphoidal tree d-cover for K3r+1,3r+1, as ∆(Ti) ≤
2r + 1 = ⌈ 2n

3 ⌉ ≤ d for each i. Hence γ
(d)
T (Kn,n) = γ

(d)
T (K3r+1,3r+1) ≤ 2r + 1 = ⌈ 2n

3 ⌉.
Let n ≡ 2(mod3) and n = 3r+2 for some r. Let J3 be a minimum graphoidal tree d-cover

for K3r+1,3r+1 as in the previous case. Let J3 = {T1, T2, · · · , T2r+1}. For 1 ≤ i ≤ r, we define

T ′
i = Ti ∪ {(xi, y3r+2)},
T ′

r+i = Tr+i ∪ {(yi, x3r+2)},
T ′

2r+1 = T2r+1,

T ′
2r+2 = {(x3r+2, xr+i) : 1 ≤ i ≤ 2r + 2} ∪ {(y3r+2, xr+i) : 1 ≤ i ≤ 2r + 1}.

Clearly, J4 = {T ′
1, T

′
2, · · · , T ′

2r+2} is a graphoidal tree d-cover for K3r+2,3r+2, as ∆(T ′
i ) ≤

2r+2 = ⌈ 2n
3 ⌉ ≤ d for each i. Hence γ

(d)
T (Kn,n) = γ

(d)
T (K3r+2,3r+2) ≤ 2r+2 = ⌈ 2n

3 ⌉. Therefore,

γ
(d)
T (Kn,n) = ⌈ 2n

3 ⌉ for every n. �

Now we turn to the case of trees.

Theorem 3.11 Let G be a tree and let U = {v ∈ V (G) : deg(v) − d > 0}. Then γ
(d)
T (G) =∑

v∈V (G)

χU (v)(deg(v) − d) + 1, where d ≥ 2 and χU (v) is the characteristic function of U .

Proof The proof is by induction on the number of vertices m whose degrees are greater

than d. If m = 0, then J = G is clearly a graphoidal tree d-cover. Hence the result is true

in this case and γ
(d)
T (G) = 1. Let m > 0. Let u ∈ V (G) with degG(u) = d + s ( s > 0 ).

Now decompose G into s+ 1 trees G1, G2, · · · , Gs, Gs+1 such that degGi
(u) = 1 for 1 ≤ i ≤ s,

degGs+1
(u) = d. By induction hypothesis,

γ
(d)
T (Gi) =

∑

degGi
(v)>d

(degGi
− d) + 1 = ki, 1 ≤ i ≤ s+ 1.

Now Ji is the minimum graphoidal tree d-cover of Gi and |Ji| = ki for 1 ≤ i ≤ s + 1.

Let J = J1 ∪ J2 ∪ · · · ∪ Js+1.

Clearly J is a graphoidal tree d-cover of G. By our choice of u, u is internal in only one

tree T of J . More over, degT (u) = d and degGi
(v) = degG(v) for v 6= u and v ∈ V (Gi) for

1 ≤ i ≤ s+ 1. Therefore,
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γ
(d)
T ≤ |J | =

s+1∑

i=1

ki =
s+1∑

i=1




∑

degGi
(v)>d

(degGi
(v) − d) + 1





=

s+1∑

i=1




∑

degGi
(v)>d

(degGi
(v) − d)


+ s+ 1 =

∑

degG(v)>d,v 6=u

(degG(v) − d) + s+ 1

=
∑

degG(v)>d,v 6=u

(degG(v) − d) + (degG(u) − d) + 1 =
∑

degG(v)>d

(degG(v) − d) + 1

=
∑

v∈V (G)

χU (v)(degG(v) − d) + 1.

For each v ∈ V (G) and degG(v) > d there are at least degG(v) − d + 1 subtrees of G

in any graphoidal tree d-cover of G and so γ
(d)
T (G) ≥ ∑

degG(v)>d

(degG(v) − d) + 1. Hence

γ
(d)
T (G) =

∑
v∈V (G)

χU (v)(degG(v) − d) + 1. �

Corollary 3.12 Let G be a tree in which degree of every vertex is either greater than or equal

to d or equal to one. Then γ
(d)
T (G) = m(d−1)−p(d−2)−1, where m is the number of vertices

of degree 1 and d ≥ 2.

Proof Since all the vertices of G other than pendant vertices have degree d we have,

γ
(d)
T =

∑

v∈V (G)

χU (v)(degG(v) − d) + 1 =
∑

v∈V (G)

χU (v)(degG(v) − d) +md−m+ 1

= 2q − dp+md−m+ 1 = 2p− 2 − dp+md−m+ 1 (as q = p− 1)

= m(d− 1) − p(d− 2) − 1.

�

Recall that nd = min
J∈Gd

nJ and n = min
J∈G

nJ , where Gd is the collection of all graphoidal

tree d-covers of G, G is the collection of all graphoidal tree covers of G and nJ is the number

of vertices which are not internal vertices of any tree in J . Clearly nd = n if d ≥ ∆. Now we

prove this for any d ≥ 2.

Lemma 3.13 For any graph G, nd = n for any integer d ≥ 2.

Proof Since every graphoidal tree d-cover is also a graphoidal tree cover for G, we have

n ≤ nd. Let J = {T1, T2, · · · , Tm} be any graphoidal tree cover of G. Let Ψi be a minimum

graphoidal tree d - cover of Ti (i = 1, 2, · · · ,m). Let Ψ =
m⋃

i=1

Ψi. Clearly Ψ is a graphoidal tree

d-cover of G. Let nΨ be the number of vertices which are not internal in any tree of Ψ. Clearly

nΨ = nJ . Therefore, nd ≤ nΨ = nJ for J ∈ G , where G is the collection of graphoidal tree

covers of G and so nd ≤ n. Hence n = nd. �

We have the following result for graphoidal path cover. This theorem is proved by S.
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Arumugam and J. Suresh Suseela in [5]. We prove this, by deriving a minimum graphoidal

path cover from a graphoidal tree cover of G.

Theorem 3.14 γ
(2)
T (G) = q − p+ n2.

Proof From Theorem 3.1 it follows that γ
(2)
T (G) ≥ q − p+ n2. Let J be any graphoidal

tree cover of G and J = {T1, T2, · · · , Tk}. Let Ψi be a minimum graphoidal tree d-cover of Ti

(i = 1, 2, · · · , k). Let mi be the number of vertices of degree 1 in Ti (i = 1, 2, · · · , k). Then by

Theorem 3.12 it follows that γ
(2)
T (Ti) = mi − 1 for all i = 1, 2, · · · , k. Consider the graphoidal

tree 2-cover ΨJ =
k⋃

i=1

Ψi of G. Now

|ΨJ | =

k∑

i=1

|Ψi| =

k∑

i=1

(mi − 1) =

k∑

i=1

mi +

k∑

i=1

qi −
k∑

i=1

pi

= q −
k∑

i=1

pi +

k∑

i=1

mi.

Notice that

k∑

i=1

pi =

k∑

i=1

(numbers of internal vertices and pendant vertices of Ti)

= p− nJ +

k∑

i=1

mi.

Therefore, |ΨJ | = q − p+ n. Choose a graphoidal tree cover J of G such that nJ = n.

Then for the corresponding ΨJ we have |ΨJ | = q − p+ n = q − p+ n2, as n2 = n by Lemma

3.13. �

Corollary 3.15 If every vertex is an internal vertex of a graphoidal tree cover, then γ
(2)
T (G) =

q − p.

Proof Clearly n = 0 by definition. By Lemma 3.13, n2 = n. So we have n2 = 0. �

J. Suresh Suseela and S. Arumugam proved the following result in [5]. However, we prove

the result using graphoidal tree cover.

Theorem 3.16 Let G be a unicyclic graph with r vertices of degree 1. Let C be the unique

cycle of G and let m denote the number of vertices of degree greater than 2 on C. Then

γ
(2)
T (G) =





2 if m = 0,

r + 1 m = 1, deg(v) ≥ 3 where v is the unique vertex of degree > 2 on C,

r oterwise.
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Proof By Lemma 3.13 and Theorem 3.14, we have γ
(2)
T (G) = q−p+n. We have q(G) = p(G)

for unicyclic graph. So we have γ
(2)
T (G) = n. If m = 0, then clearly γ

(2)
T (G) = 2. Let m = 1

and let v be the unique vertex of degree > 2 on C. Let e = vw be an edge on C. Clearly

J = G− e, e is a minimum graphoidal tree cover for G and so n ≤ r + 1. Since there is a

vertex of C which is not internal in a tree of a graphoidal tree cover, we have n = r+ 1. When

m = 1, γ
(2)
T (G) = r+1. Let m ≥ 2. Let v and w be vertices of degree greater than 2 on C such

that all vertices in a (v, w) - section of C other than v and w have degree 2. Let P denote this

(v, w)-section. If P has length 1. Then P = (v, w). Clearly J = G− P, P is a graphoidal tree

cover of G. Also n = r and so γ
(2)
T (G) = r when m ≥ 2. Hence we get the theorem. �

Theorem 3.17 Let G be a graph such that γ
(G)
T ≤ δ(G) − d + 1 (δ(G) > d ≥ 2). Then

γ
(d)
T (G) = q − p(d− 1).

Proof By Theorem 3.2, γ
(d)
T (G) ≥ q−p(d−1). Let J be a minimum graphoidal tree cover

of G. Since δ > γT (G), every vertex is an internal vertex of a tree in a graphoidal tree cover

J . Moreover, since δ ≥ d+ δT (G)− 1 the degree of each internal vertex of a tree in J is ≥ d.

Let Ψi be a minimum graphoidal tree d-cover of Ti ( i = 1, 2, · · · , k ). Let mi be the number of

vertices of degree 1 in Ti ( i = 1, 2, · · · , k ). Then by Corollary 3.12, for i = 1, 2, · · · , k we have

γ
(2)
T (Ti) = −pi(d− 2) +mi(d− 1) − 1.

Consider the graphoidal tree d-cover ΨT =
k⋃

i=1

Ψi of G.

|ΨT | = |
k⋃

i=1

Ψi| =

k∑

i=1

(mi(d− 1) − pi(d− 2) − 1)

=
k∑

i=1

(mi(d− 1) − pi(d− 2) + qi − pi)

=
k∑

i=1

[(mi − pi)(d− 1) + qi]

= (d− 1)

k∑

i=1

(mi − pi) +

k∑

i=1

qi

= (d− 1)

k∑

i=1

(mi − pi) + q.

Notice that

k∑

i=1

pi =
k∑

i=1

(numbers of internal vertices and pendant vertices of Ti)

= p+
k∑

i=1

mi.
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Therefore, |ΨT | = −(d− 1) + q. In other words, γ
(d)
T (G) ≤ q − p(d− 1). Hence, γ

(d)
T (G) =

q − p(d− 1) �

Corollary 3.18 Let G be a graph such that δ(G) = ⌈p
2⌉ + k where k ≥ 1. Then γ

(d)
T (G) =

q − p(d− 1) for d ≤ k + 1.

Proof δ(G)− d+ 1 = ⌈p
2⌉+ k− d+ 1 ≥ ⌈p

2⌉ ≥ γT (G) by Theorem 2.5. Applying Theorem

3.17, γ
(d)
T (G) = q − p(d− 1). �

Corollary 3.19 Let G be an r-regular graph, where r > ⌈p
2⌉. Then γ

(d)
T (G) = q − p(d− 1) for

d ≤ r + 1 − ⌈p
2⌉.

Proof Here δ(G) = r and so the result follows from Corollary 3.18. �

Corollary 3.20 γ
(d)
T (Km,n) = q − p(d− 1), where 2 ≤ d ≤ 2m−n

3 and 6 ≤ m ≤ n ≤ 2m− 6.

Proof Consider

δ(G) − d+ 1 ≥ m− 2m− n

3
+ 1 =

3m− 2m+ n

3
+ 1

=
m+ n

3
+ 1 ≥ ⌈m+ n

3
⌉ = γT (Km,n).

Hence by Corollary 3.18, γ
(d)
T (Km,n) = q − p(d− 1). �

Theorem 3.21 γ
(d)
T (Cm × Cn) = 3 for d ≥ 4 and γ

(2)
T (Cm × Cn) = q − p.

Proof For d ≥ ∆(G) = 4, γ
(d)
T (Cm × Cn) = γT (Cm × Cn) = 3 by Theorem 2.14. Since

δ(Cm × Cn) = 4 and γT (Cm × Cn) = 3, we have γT (Cm × Cn) = δ(G) − d + 1 when d = 2.

Applying Theorem 3.17, γ
(2)
T (Cm × Cn) = q − p. �
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