178 research outputs found

    Differential regulation of different human papilloma virus variants by the POU family transcription factor Brn-3a

    Get PDF
    The Brn-3a POU family transcription factor is over-expressed in human cervical carcinoma biopsies and is able to activate expression of the human papilloma virus type 16 (HPV-16) upstream regulatory region (URR), which drives the expression of the E6 and E7 oncoproteins. Inhibition of Brn-3a expression in human cervical cancer cells inhibits HPV gene expression and reduces cellular growth and anchorage independence in vitro as well as the ability to form tumours in vivo. Here we show that Brn-3a differentially regulates different HPV-16 variants that have previously been shown to be associated with different risks of progression to cervical carcinoma. In human cervical material Brn-3a levels correlate directly with HPV E6 levels in individuals infected with a high risk variant of HPV-16 whereas this is not the case for a low risk variant. Moreover, the URRs of high and intermediate risk variants are activated by Brn-3a in transfection assays whereas the URR of a low risk variant is not. The change of one or two bases in a low risk variant URR to their equivalent in a higher risk URR can render the URR responsive to Brn-3a and vice versa. These results help explain why the specific interplay between viral and cellular factors necessary for the progression to cervical carcinoma, only occurs in a minority of those infected with HPV-16

    Assessment of Seismic Hazards in Underground Mine Operations using Machine Learning

    Get PDF
    The most common causes of coal mining accidents are seismic hazard, fires, explosions, and landslips. These accidents are usually caused by various factors such as mechanical and technical failures, as well as social and economic factors. An analysis of these accidents can help identify the exact causes of these accidents and prevent them from happening in the future. There are also various seismic events that can occur in underground mines. These include rock bumps and tremors. These have been reported in different countries such as Australia, China, France, Germany, India, Russia, and Poland. Through the use of advanced seismological and seismic monitoring systems, we can now better understand the rock mass processes that can cause a seismic hazard. Unfortunately, despite the advancements, the accuracy of these methods is still not perfect. One of the main factors that prevent the development of effective seismic hazard prediction techniques is the complexity of the seismic processes. In order to carry out effective seismic risk assessment in mines, it is important that the discrimination of seismicity in different regions is carried out. The widespread use of machine learning in analyzing seismic data, it provides reliability and feasibility for preventing major mishaps. This paper provides uses various machine learning classifiers to predict seismic hazards

    Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified.</p> <p>Methods</p> <p>In this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples.</p> <p>Results</p> <p>By TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, <it>ATBF1</it>, <it>CACNA2D3</it>, <it>CNTNAP2</it>, <it>FUSIP1</it>, <it>GNB1</it>, <it>SLC35E2</it>, and <it>TFAP2B</it>. The gene that showed the highest fold change in the TLDA analysis, <it>POU4F2</it>, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene <it>CNTNAP2 </it>that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of <it>POU4F2 </it>and <it>CNTNAP2 </it>showed no genetic alterations that could explain a lower expression in unfavourable NB tumours.</p> <p>Conclusion</p> <p>Through two steps of verification, seven transcripts were found to significantly discriminate between favourable and unfavourable NB tumours. Four of the transcripts, <it>CACNA2D3</it>, <it>GNB1</it>, <it>SLC35E2</it>, and <it>TFAP2B</it>, have been observed in previous microarray studies, and are in this study independently verified. Our results suggest these transcripts to be markers of malignancy, which could have a potential usefulness in the clinic.</p

    High-Frequency Oscillatory Ventilation Use and Severe Pediatric ARDS in the Pediatric Hematopoietic Cell Transplant Recipient

    Get PDF
    INTRODUCTION: The effectiveness of high-frequency oscillatory ventilation (HFOV) in the pediatric hematopoietic cell transplant patient has not been established. We sought to identify current practice patterns of HFOV, investigate parameters during HFOV and their association with mortality, and compare the use of HFOV to conventional mechanical ventilation in severe pediatric ARDS. METHODS: This is a retrospective analysis of a multi-center database of pediatric and young adult allogeneic hematopoietic cell transplant subjects requiring invasive mechanical ventilation for critical illness from 2009 through 2014. Twelve United States pediatric centers contributed data. Continuous variables were compared using a Wilcoxon rank-sum test or a Kruskal-Wallis analysis. For categorical variables, univariate analysis with logistic regression was performed. RESULTS: The database contains 222 patients, of which 85 subjects were managed with HFOV. Of this HFOV cohort, the overall pediatric ICU survival was 23.5% (n = 20). HFOV survivors were transitioned to HFOV at a lower oxygenation index than nonsurvivors (25.6, interquartile range 21.1-36.8, vs 37.2, interquartile range 26.5-52.2, P = .046). Survivors were transitioned to HFOV earlier in the course of mechanical ventilation, (day 0 vs day 2, P = .002). No subject survived who was transitioned to HFOV after 1 week of invasive mechanical ventilation. We compared subjects with severe pediatric ARDS treated only with conventional mechanical ventilation versus early HFOV (within 2 d of invasive mechanical ventilation) versus late HFOV. There was a trend toward difference in survival (conventional mechanical ventilation 24%, early HFOV 30%, and late HFOV 9%, P = .08). CONCLUSIONS: In this large database of pediatric allogeneic hematopoietic cell transplant subjects who had acute respiratory failure requiring invasive mechanical ventilation for critical illness with severe pediatric ARDS, early use of HFOV was associated with improved survival compared to late implementation of HFOV, and the subjects had outcomes similar to those treated only with conventional mechanical ventilation

    Early Cumulative Fluid Balance and Outcomes in Pediatric Allogeneic Hematopoietic Cell Transplant Recipients With Acute Respiratory Failure: A Multicenter Study

    Get PDF
    Objectives: To evaluate the associations between early cumulative fluid balance (CFB) and outcomes among critically ill pediatric allogeneic hematopoietic cell transplant (HCT) recipients with acute respiratory failure, and determine if these associations vary by treatment with renal replacement therapy (RRT). Methods: We performed a secondary analysis of a multicenter retrospective cohort of patients (1mo - 21yrs) post-allogeneic HCT with acute respiratory failure treated with invasive mechanical ventilation (IMV) from 2009 to 2014. Fluid intake and output were measured daily for the first week of IMV (day 0 = day of intubation). The exposure, day 3 CFB (CFB from day 0 through day 3 of IMV), was calculated using the equation [Fluid in - Fluid out] (liters)/[PICU admission weight](kg)*100. We measured the association between day 3 CFB and PICU mortality with logistic regression, and the rate of extubation at 28 and 60 days with competing risk regression (PICU mortality = competing risk). Results: 198 patients were included in the study. Mean % CFB for the cohort was positive on day 0 of IMV, and increased further on days 1-7 of IMV. For each 1% increase in day 3 CFB, the odds of PICU mortality were 3% higher (adjusted odds ratio (aOR) 1.03, 95% CI 1.00-1.07), and the rate of extubation was 3% lower at 28 days (adjusted subdistribution hazard ratio (aSHR) 0.97, 95% CI 0.95-0.98) and 3% lower at 60 days (aSHR 0.97, 95% CI 0.95-0.98). When day 3 CFB was dichotomized, 161 (81%) had positive and 37 (19%) had negative day 3 CFB. Positive day 3 CFB was associated with higher PICU mortality (aOR 3.42, 95% CI 1.48-7.87) and a lower rate of extubation at 28 days (aSHR 0.30, 95% CI 0.18-0.48) and 60 days (aSHR 0.30, 95% 0.19-0.48). On stratified analysis, the association between positive day 3 CFB and PICU mortality was significantly stronger in those not treated with RRT (no RRT: aOR 9.11, 95% CI 2.29-36.22; RRT: aOR 1.40, 95% CI 0.42-4.74). Conclusions: Among critically ill pediatric allogeneic HCT recipients with acute respiratory failure, positive and increasing early CFB were independently associated with adverse outcomes

    ACAP-A/B Are ArfGAP Homologs in Dictyostelium Involved in Sporulation but Not in Chemotaxis

    Get PDF
    Arfs and Arf GTPase-activating proteins (ArfGAPs) are regulators of membrane trafficking and actin dynamics in mammalian cells. In this study, we identified a primordial Arf, ArfA, and two ArfGAPs (ACAP-A/B) containing BAR, PH, ArfGAP and Ankyrin repeat domains in the eukaryote Dictyostelium discoideum. In vitro, ArfA has similar nucleotide binding properties as mammalian Arfs and, with GTP bound, is a substrate for ACAP-A and B. We also investigated the physiological functions of ACAP-A/B by characterizing cells lacking both ACAP-A and B. Although ACAP-A/B knockout cells showed no defects in cell growth, migration or chemotaxis, they exhibited abnormal actin protrusions and ∼50% reduction in spore yield. We conclude that while ACAP-A/B have a conserved biochemical mechanism and effect on actin organization, their role in migration is not conserved. The absence of an effect on Dictyostelium migration may be due to a specific requirement for ACAPs in mesenchymal migration, which is observed in epithelial cancer cells where most studies of mammalian ArfGAPs were performed
    • …
    corecore