7 research outputs found

    Theory, design and CFD analysis of a multi-blade screw pump evolving liquid lead for a GEN-IV LFR Nuclear Power Plant

    Get PDF
    In this presentation, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the reference conceptual design of the Advanced Lead Fast Reactor European Demonstrator (ALFRED). The pump is analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with the 3D CFD code ANSYS CFX. The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any velocity-related erosion phenomenon. Albeit some erosion-related issues remain to be fully addressed, the results of this 3D analysis show that a multi-blade screw pump could be a viable option for ALFRED from a thermo-fluid-dynamic point of view

    Numerical investigation on a jet pump evolving liquid lead for GEN-IV reactors

    No full text
    none4Heavy-liquid metals, such as lead and lead–bismuth eutectic, are promising candidates as coolant for advanced GEN-IV fast reactors as well as for Accelerator-Driven Systems. The advancing knowledge of the thermal-hydraulic behavior of these fluids leads to explore new geometries and new concepts aimed at optimizing the key components of a GEN-IV reactor for these fluids. In this paper, a theoretical and computational analysis is presented of a jet pump evolving liquid lead as primary pump for ALFRED (Advanced Lead Fast Reactor European Demonstrator). The jet pump is modeled with a 3D CFD code (FLUENT) and at design operating conditions. The analysis shows that a jet pump could be a viable solution for ALFRED (at least from a thermal-hydraulic point of view), albeit some technological issues remain to be fully addressed.mixedAndrea Mangialardo; Walter Borreani; Guglielmo Lomonaco; Fabrizio MaguglianiAndrea, Mangialardo; Borreani, Walter; Lomonaco, Guglielmo; Fabrizio, Maguglian

    Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    No full text
    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or Lead-Bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MWth pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results of this analysis show that a multi-blade screw pump could be a viable option for ALFRED from a thermo-fluid-dynamic point of view

    Design and Selection of Innovative Primary Circulation Pumps for GEN-IV Lead Fast Reactors

    Get PDF
    Although Lead-cooled Fast Reactor (LFR) is not a new concept, it continues to be an example of innovation in the nuclear field. Recently, there has been strong interest in liquid lead (Pb) or liquid lead–bismuth eutectic (LBE) both critical and subcritical systems in a relevant number of Countries, including studies performed in the frame of GENERATION-IV initiative. In this paper, the theoretical and computational findings for three different designs of Primary Circulation Pump (PCP) evolving liquid lead (namely the jet pump, the Archimedean pump and the blade pump) are presented with reference to the ALFRED (Advanced Lead Fast Reactor European Demonstrator) design. The pumps are first analyzed from the theoretical point of view and then modeled with a 3D CFD code. Required design performance of the pumps are approximatively around an effective head of 2 bar with a mass flow rate of 5000 kg/s. Taking into account the geometrical constraints of the reactor and the fluid dynamics characteristics of the molten lead, the maximum design velocity for molten lead fluid flow of 2 m/s may be exceeded giving rise to unacceptable erosion phenomena of the blade or rotating component of the primary pumping system. For this reason a deep investigation of non-conventional axial pumps has been performed. The results presented shows that the design of the jet pump looks like beyond the current technological feasibility while, once the mechanical challenges of the Archimedean (screw) pump and the fluid-dynamic issues of the blade pump will be addressed, both could represent viable solutions as PCP for ALFRED. Particularly, the blade pump shows the best performance in terms of pressure head generated in normal operation conditions as well as pressure drop in locked rotor conditions. Further optimizations (mainly for what the geometrical configuration is concerned) are still necessary

    ANDREAS: Artificial intelligence traiNing scheDuler foR accElerAted resource clusterS

    Get PDF
    Artificial Intelligence (AI) and Deep Learning (DL) algorithms are currently applied to a wide range of products and solutions. DL training jobs are highly resource demanding and they experience great benefits when exploiting AI accelerators (e.g., GPUs). However, the effective management of GPU-powered clusters comes with great challenges. Among these, efficient scheduling and resource allocation solutions are crucial to maximize performance and minimize Data Centers operational costs. In this paper we propose ANDREAS, an advanced scheduling solution that tackles these problems jointly, aiming at optimizing DL training runtime workloads and their energy consumption in accelerated clusters. Experiments based on simulation demostrate that we can achieve a cost reduction between 30 and 62% on average with respect to first-principle methods while the validation on a real cluster shows a worst case deviation below 13% between actual and predicted costs, proving the effectiveness of ANDREAS solution in practical scenario

    < QC | HPC >: Quantum for HPC

    No full text
    Quantum Computing (QC) describes a new way of computing based on the principles of quantum mechanics. From a High Performance Computing (HPC) perspective, QC needs to be integrated: at a system level, where quantum computer technologies need to be integrated in HPC clusters; at a programming level, where the new disruptive ways of programming devices call for a full hardware-software stack to be built; at an application level, where QC is bound to lead to disruptive changes in the complexity of some applications so that compute-intensive or intractable problems in the HPC domain might become tractable in the future. The White Paper QC for HPC focuses on the technology integration of QC in HPC clusters, gives an overview of the full hardware-software stack and QC emulators, and highlights promising customised QC algorithms for near-term quantum computers and its impact on HPC applications. In addition to universal quantum computers, we will describe non-universal QC where appropriate. Recent research references will be used to cover the basic concepts. Thetarget audience of this paper is the European HPC community: members of HPC centres, HPC algorithm developers, scientists interested in the co-design for quantum hardware, benchmarking, etc
    corecore