335 research outputs found
Spin-wave coupling to electromagnetic cavity fields in dysposium ferrite
Coupling of spin-waves with electromagnetic cavity field is demonstrated in
an antiferromagnet, dysprosium ferrite (DyFeO3). By measuring transmission at
0.2-0.35 THz and sweeping sample temperature, magnon-photon coupling signatures
were found at crossings of spin-wave resonances with Fabry-Perot cavity modes
formed in samples. The obtained spectra are explained in terms of classical
electrodynamics and a microscopic model.Comment: 3 pages, 2 figure
Optical properties of BiTeBr and BiTeCl
We present a comparative study of the optical properties - reflectance,
transmission and optical conductivity - and Raman spectra of two layered
bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized
in the a-b planes. Despite different space groups, the optical properties of
the two compounds are very similar. Both materials are doped semiconductors,
with the absorption edge above the optical gap which is lower in BiTeBr (0.62
eV) than in BiTeCl (0.77 eV). The same Rashba splitting is observed in the two
materials. A non-Drude free carrier contribution in the optical conductivity,
as well as three Raman and two infrared phonon modes, are observed in each
compound. There is a dramatic difference in the highest infrared phonon
intensity for the two compounds, and a difference in the doping levels. Aspects
of the strong electron-phonon interaction are identified. Several interband
transitions are assigned, among them the low-lying absorption which has
the same value 0.25 eV in both compounds, and is caused by the Rashba spin
splitting of the conduction band. An additional weak transition is found in
BiTeCl, caused by the lower crystal symmetry.Comment: Accepted in PR
Unusual Shubnikov-de Haas oscillations in BiTeCl
We report measurements of Shubnikov-de Haas (SdH) oscillations in single
crystals of BiTeCl at magnetic fields up to 31 T and at temperatures as low as
0.4 K. Two oscillation frequencies were resolved at the lowest temperatures,
Tesla and Tesla. We also measured the
infrared optical reflectance and Hall effect; we
propose that the two frequencies correspond respectively to the inner and outer
Fermi sheets of the Rashba spin-split bulk conduction band. The bulk carrier
concentration was cm and the effective
masses for the inner and for the
outer sheet. Surprisingly, despite its low effective mass, we found that the
amplitude of is very rapidly suppressed with increasing temperature,
being almost undetectable above K
Ultrafast Optical Control of the Electronic Properties of
We report on the temperature dependence of the electronic
properties, studied at equilibrium and out of equilibrium, by means of time and
angle resolved photoelectron spectroscopy. Our results unveil the dependence of
the electronic band structure across the Fermi energy on the sample
temperature. This finding is regarded as the dominant mechanism responsible for
the anomalous resistivity observed at T* 160 K along with the change of
the charge carrier character from holelike to electronlike. Having addressed
these long-lasting questions, we prove the possibility to control, at the
ultrashort time scale, both the binding energy and the quasiparticle lifetime
of the valence band. These experimental evidences pave the way for optically
controlling the thermoelectric and magnetoelectric transport properties of
Tunable Polaronic Conduction in Anatase TiO2
Oxygen vacancies created in anatase TiO2 by UV photons (80â130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu
BiTeCl and BiTeBr: a comparative high-pressure optical study
We here report a detailed high-pressure infrared transmission study of BiTeCl
and BiTeBr. We follow the evolution of two band transitions: the optical
excitation between two Rashba-split conduction bands, and the
absorption across the band gap. In the low pressure range, ~GPa,
for both compounds is approximately constant with pressure and
decreases, in agreement with band structure calculations. In BiTeCl, a clear
pressure-induced phase transition at 6~GPa leads to a different ground state.
For BiTeBr, the pressure evolution is more subtle, and we discuss the
possibility of closing and reopening of the band gap. Our data is consistent
with a Weyl phase in BiTeBr at 56~GPa, followed by the onset of a structural
phase transition at 7~GPa.Comment: are welcom
Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1-TiSe
Using time- and angle-resolved photoemission spectroscopy with selective
near- and mid-infrared photon excitations, we investigate the femtosecond
dynamics of the charge density wave (CDW) phase in 1-TiSe, as well as
the dynamics of CDW fluctuations at 240 K. In the CDW phase, we observe the
coherent oscillation of the CDW amplitude mode. At 240 K, we single out an
ultrafast component in the recovery of the CDW correlations, which we explain
as the manifestation of electron-hole correlations. Our momentum-resolved study
of femtosecond electron dynamics supports a mechanism for the CDW phase
resulting from the cooperation between the interband Coulomb interaction, the
mechanism of excitonic insulator phase formation, and electron-phonon coupling.Comment: 9 pages, 6 figure
- âŠ