32 research outputs found
Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents
The Adapting Agriculture to Climate Change Project set out to improve the diversity,
quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and
2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed
collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we
describe the implementation of the 25 national collecting programs and present the key results. A total
of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety
duplicated in national and international genebanks, and made available through the Multilateral
System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant
Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most
collected genepools, although the greatest number of primary genepool collections were made for
rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets
were best achieved. Several of the newly collected samples have already been used in pre-breeding
programs to adapt crops to future challenges.info:eu-repo/semantics/publishedVersio
European genetic resources conservation in a rapidly changing world: three existential challenges for the crop, forest and animal domains in the 21st century
16 Pág.Even though genetic resources represent a fundamental reservoir of options to achieve sustainable development goals in a changing world, they are overlooked in the policy agenda and severely threatened. The conservation of genetic resources relies on complementary in situ and ex situ approaches appropriately designed for each type of organism. Environmental and socioeconomic changes raise new challenges and opportunities for sustainable use and conservation of genetic resources. Aiming at a more integrated and adaptive approach, European scientists and genetic resources managers with long experience in the agricultural crop, animal and forestry domains joined their expertise to address three critical challenges: (1) how to adapt genetic resources conservation strategies to climate change, (2) how to promote in situ conservation strategies and (3) how can genetic resources conservation contribute to and benefit from agroecological systems. We present here 31 evidence-based statements and 88 key recommendations elaborated around these questions for policymakers, conservation actors and the scientific community. We anticipate that stakeholders in other genetic resources domains and biodiversity conservation actors across the globe will have interest in these crosscutting and multi-actor recommendations, which support several biodiversity conservation policies and practices.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 817580, GenRes Bridge project.Peer reviewe