1,320 research outputs found

    Etat des lieux et questions : combien y aura-t-il de psychologues en 2020 ?

    Get PDF
    Peut-on continuer à former un aussi grand nombre de psychologues dans nos facultés ? Quelle formation donner, en lien avec les associations professionnelles, le monde des employeurs et les instances étatiques

    A Two-Phase Mass Flow Rate Model for Nitrous Oxide Based on Void Fraction

    Get PDF
    In the field of space propulsion, self pressurized technology is an example of innovation capable of improving system performances through reduction of volumes and other optimizations. Potential applications are widespread and not limited to the propulsion panorama: from on-orbit maneuvering to in-orbit servicing, from refueling of satellites at the end of life to in situ resource exploitation for missions headed towards remote objects of the solar system. However, important drawbacks have been reported for these systems: modeling of fluids and thermal phenomena is complex, thus preventing accurate performance predictions. As a result, no comprehensive and accurate model capable of describing the dynamics of a self-pressurizing propellant tank has been developed so far. In this context, this paper proposes a two-phase mass flow rate model based on void fraction. N2O has been selected due to its use as a green and self-pressurized propellant for in-space propulsive applications. The aim of this paper is to describe the current mass flow rate models present in the literature for this fluid and compare the new model with the one proposed by Dyer. A model validation is also offered, and a test campaign is mentioned. Finally, preliminary results are shown and discussed: results are then compared with the ones obtained through the Dyer model, in order to retrieve a comprehensive comparison among the two simulation frameworks. Comments on the results are added, showing the improvements as well as the limitations of the proposed framework

    The automation of SMEFT-Assisted Constraints on UV-Complete Models

    Full text link
    The ongoing Effective Field Theory (EFT) program at the LHC and elsewhere is motivated by streamlining the connection between experimental data and UV-complete scenarios of heavy new physics beyond the Standard Model (BSM). This connection is provided by matching relations mapping the Wilson coefficients of the EFT to the couplings and masses of UV-complete models. Building upon recent work on the automation of tree-level and one-loop matching in the SMEFT, we present a novel strategy automating the constraint-setting procedure on the parameter space of general heavy UV-models matched to dimension-six SMEFT operators. A new Mathematica package, match2fit, interfaces Matchmakereft, which derives the matching relations for a given UV model, and SMEFiT, which provides bounds on the Wilson coefficients by comparing with data. By means of this pipeline and using both tree-level and one-loop matching, we derive bounds on a wide range of single- and multi-particle extensions of the SM from a global dataset composed by LHC and LEP measurements. Whenever possible, we benchmark our results with existing studies. Our framework realises one of the main objectives of the EFT program in particle physics: deploying the SMEFT to bypass the need of directly comparing the predictions of heavy UV models with experimental data.Comment: 28+15 pages, 14 figures, 4 appendices. Open-source code is available on http://lhcfitnikhef.github.io/smefit_release/ and http://github.com/arossia94/match2fi

    The antitumor drug, 1,3-bis(2-chloroethyl)-1-nitroso-urea, inactivates human nicotinamide mononucleotide adenylyltransferase.

    Get PDF
    Nicotinamide mononucleotide (NMN) adenylyltransferase (EC 2.7.7.1) from human placenta is rapidly inactivated by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). A similar inactivation is observed with other C- and N-nitroso compounds. The inactivation by BCNU is dependent on incubation time, temperature and BCNU concentration. Protective reagents for -SH groups, dithiothreitol and beta-mercaptoethanol, and the substrate NMN are very effective in protecting NMN adenylyltransferase from BCNU inactivation and in preserving its catalytic properties, while ATP is less efficient. Incubation of BCNU-inactivated and dialysed NMN adenylyltransferase with dithiothreitol results in a partial recovery of the enzymatic activity

    Divergent male androgen patterns in two sympatric species of Leptodactylus from subtropical South America

    Get PDF
    Leptodactylus ocellatus L. is sympatric with L. chaquensis Cei on the banks of the Parana river, yet does not show evident gametogenic discontinuity or cyclical variation of secondary sex characters compared with the striking and well-defined seasonal rhythm found in L. chaquensis. The endocrine mechanisms regulating the seasonal reproductive cycle in the male of both species in their sympatric area have been studied through assessment of plasma androgens, related to the morphological examination of testis. A sudden intense spermatogenic activity was recorded in the testes of L. chaquensis in spring months (September-October), but this ceased in late November, and was followed by a strikingly long summer rest. Conversely, few morphological changes in L. ocellatus were found, since the mating period is more irregular and extensive. The androgen plasma changes paralleled the morphological observations. The plasma androgens behaved differently in the two species, since in L. chaquensis the androgen peak values occurred at the end of the intense spermatogenic activity, accompanied by dramatic increase of testicular weight and spermiation, while in L. ocellatus, the highest androgen plasma levels, occurring in August, seemed to indicate a precocious reproductive activity in this species. These data are discussed, in view of the pivotal role played by androgens in regulating the discontinuous reproductive cycle of L. chaquensis.Material digitalizado en SEDICI gracias a la colaboración del Dr. Jorge Williams (FCNM-UNLP).Facultad de Ciencias Naturales y Muse

    Effects of water stress on spectral reflectance of bermudagrass

    Get PDF
    In the south-central Italy, during summer rainfall does not supply a sufficient amount of water. Therefore, irrigation management during dry periods is important for maintaining turf quality. The hybrid bermudagrass (Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt–Davy) is known to represent the dominant warm-season turfgrass in warm to temperate climatic regions and its drought tolerance make bermudagrass a competitive turfgrass. A greenhouse experiment was conducted using uniform cores of hybrid bermudagrass, which were secured in a polyvinyl chloride cylinders and watered by constant sub-irrigation. The objectives of the present research were to measure the spectral reflectance with a new generation handheld spectroradiometer on hybrid bermudagrass and to explore various vegetation indices to be used as future detecting tool to study water stress in bermudagrass. Moreover, the potential uses of multivariate processing techniques for discriminating different water stress conditions in turfgrass has been investigated. Besides spectral indices, multivariate methods, although performed on a data set limited in terms of sample size, have shown a great potential for water stress monitoring in turfgrass and surely deserve further investigations. There are different indices that use distinct water absorption features independent of chlorophyll concentration, such as water index (WI = R900/R970) that has been reported to be a robust index of canopy water content and is used as an active indicator of changes in Leaf Relative Water Content (LRWC). Also, the ratio of WI with NDVI (WI/NDVI = (R900/R970)/((R800 − R680)/(R800 + R680)]) was found to be an effective indicator of water stress. Another vegetation index to detect water features is normalized difference water index (NDWI), designed to maximize reflectance of water by using green wavelengths. In our trial in bermudagrass the relationships studied, suggest that WI (900/970) and WI/NDVI, among the indices studied, are the more effective indicators of water stress. In fact, lower values of WI indicate higher water stress, while higher values of WI/NDVI indicate higher water stress levels

    Towards multi-physics description of fuel behaviour for accidental conditions

    Get PDF
    In the present document, the development of well-structured multi-physics simulation environments to complement fuel performance analysis is presented. The simulation environments are based on information from the sub-channel / reactor scale, i.e., initial and boundary conditions for the fuel pin simulations in off-normal conditions. The environments are developed based on the codes TRANSURANUS, OpenFOAM, SIMMER-III, and BELLA, focused on satisfying the requirements of the code/module to fuel behaviour, with a strong perspective towards the BPJ simulations of concern for the MYRRHA sub-critical core. The results obtained using the multi-physics simulation environments support the design optimization and safety assessment of the MYRRHA fuel pin during normal irradiation and transient scenarios. As well, it will be used in the activity associated with Task 6.2 of the PATRICIA Project, focused on the in-depth, complete analysis of multiple BPJ scenarios, to identify the worst case and hence draw conservative conclusions on the MYRRHA pin safety under irradiation
    corecore