239 research outputs found

    Chaoticity and Shell Effects in the Nearest-Neighbor Distributions

    Full text link
    Statistics of the single-particle levels in a deformed Woods-Saxon potential is analyzed in terms of the Poisson and Wigner nearest-neighbor distributions for several deformations and multipolarities of its surface distortions. We found the significant differences of all the distributions with a fixed value of the angular momentum projection of the particle, more closely to the Wigner distribution, in contrast to the full spectra with Poisson-like behavior. Important shell effects are observed in the nearest neighbor spacing distributions, the larger the smaller deformations of the surface multipolarities.Comment: 10 pages and 9 figure

    Hydroxyapatite thick films as pressure sensors

    Get PDF
    Electrical properties of hydroxyapatite (HA) in the form of screen printed thick films that can be used as a biocompatible coating for bone and dental implants are reported. In particular, piezo- and pyroelectric behaviour of these films suggest that they can be used to promote faster healing of bones and prevent rejection of implants. Moreover, the reversible pressure-induced changes in their electrical characteristics can be employed for real-time in vivo pressure sensors implantable simultaneously, for example, with knee or hip prosthesis. The additional advantage of HA in the form of screen-printed thick films is that, due to the technology’s versatility, it can be produced on flexible substrate in any shape and size to suit the needs of various patients

    Analytical perturbative approach to periodic orbits in the homogeneous quartic oscillator potential

    Full text link
    We present an analytical calculation of periodic orbits in the homogeneous quartic oscillator potential. Exploiting the properties of the periodic Lam{\'e} functions that describe the orbits bifurcated from the fundamental linear orbit in the vicinity of the bifurcation points, we use perturbation theory to obtain their evolution away from the bifurcation points. As an application, we derive an analytical semiclassical trace formula for the density of states in the separable case, using a uniform approximation for the pitchfork bifurcations occurring there, which allows for full semiclassical quantization. For the non-integrable situations, we show that the uniform contribution of the bifurcating period-one orbits to the coarse-grained density of states competes with that of the shortest isolated orbits, but decreases with increasing chaoticity parameter α\alpha.Comment: 15 pages, LaTeX, 7 figures; revised and extended version, to appear in J. Phys. A final version 3; error in eq. (33) corrected and note added in prin

    Analytic approach to bifurcation cascades in a class of generalized H\'enon-Heiles potentials

    Get PDF
    We derive stability traces of bifurcating orbits in H\'enon-Heiles potentials near their saddlesComment: LaTeX revtex4, 38 pages, 7 PostScript figures, 2 table

    Aberrant Development of Thymocytes in Mice Lacking Laminin-2

    Get PDF
    In previous in vitro studies, we proposed a role for the extracellular matrix component, laminin- 2, and its integrin receptor, VLA-6, in thymocyte development. The characterization of two dystrophic mouse strains with different defects in laminin-2 allowed us to examine this proposal in vivo. Mice deficient in laminin-2, dy/dy, show a significant reduction in thymus size and number of thymocytes compared to normal littermates. These mice also exhibited apparent alterations of thymic architecture. Examination of the CD4/CD8 populations in dy/dy thymi showed large relative increases in the DN (CD4-CD8-) and SP (CD4+CD8-, CD4-CD8+) populations and a significant decrease in the DP (CD4+CD8+) population. Further examination of the DN population for CD44 and CD25 expression showed a remarkable decrease in the more mature pre-T cell populations. Analysis of apoptosis in situ, and by flow cytometry, in dy/dy thymi revealed a significant increase in apoptotic DN thymocytes in the capsule and subcapsular regions. Interestingly, thymocyte development appeared to proceed normally in dystrophic mice expressing a mutant form of laminin-2, dy2J, as well as, in fetal and neonatal dy/dy mice. We propose that laminin-2 plays an active role in thymocyte development by delivering cell survival and differentiation signals at specific stages of development in young adult mice

    Shell structure and orbit bifurcations in finite fermion systems

    Full text link
    We first give an overview of the shell-correction method which was developed by V. M. Strutinsky as a practicable and efficient approximation to the general selfconsistent theory of finite fermion systems suggested by A. B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).Comment: LaTeX, 67 pp., 30 figures; revised version (missing part at end of 3.1 implemented; order of references corrected

    The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: I. Limits and Detections

    Get PDF
    The DIRBE on the COBE spacecraft was designed primarily to conduct systematic search for an isotropic CIB in ten photometric bands from 1.25 to 240 microns. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 microns (\nu I_\nu < 64 nW/m^2/sr, 95% CL) and at 240 microns (\nu I_\nu < 28 nW/m^2/sr, 95% CL). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 microns data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 microns. No plausible solar system or Galactic source of the observed 140 and 240 microns residuals can be identified, leading to the conclusion that the CIB has been detected at levels of \nu I_\nu = 25+-7 and 14+-3 nW/m^2/sr at 140 and 240 microns respectively. The integrated energy from 140 to 240 microns, 10.3 nW/m^2/sr, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.Comment: 26 pages and 5 figures, accepted for publication in the Astrophyical Journa

    Semiclassical description of shell effects in finite fermion systems

    Get PDF
    A short survey of the semiclassical periodic orbit theory, initiated by M. Gutzwiller and generalized by many other authors, is given. Via so-called semiclassical trace formmulae, gross-shell effects in bound fermion systems can be interpreted in terms of a few periodic orbits of the corresponding classical systems. In integrable systems, these are usually the shortest members of the most degenerate families or orbits, but in some systems also less degenerate orbits can determine the gross-shell structure. Applications to nuclei, metal clusters, semiconductor nanostructures, and trapped dilute atom gases are discussed.Comment: LaTeX (revteX4) 6 pages; invited talk at Int. Conference "Finite Fermionic Systems: Nilsson Model 50 Years", Lund, Sweden, June 14-18, 200
    • …
    corecore