432 research outputs found

    Ostrogradski Formalism for Higher-Derivative Scalar Field Theories

    Get PDF
    We carry out the extension of the Ostrogradski method to relativistic field theories. Higher-derivative Lagrangians reduce to second differential-order with one explicit independent field for each degree of freedom. We consider a higher-derivative relativistic theory of a scalar field and validate a powerful order-reducing covariant procedure by a rigorous phase-space analysis. The physical and ghost fields appear explicitly. Our results strongly support the formal covariant methods used in higher-derivative gravity.Comment: 22 page

    Gauge Fixing in Higher Derivative Gravity

    Get PDF
    Linearized four-derivative gravity with a general gauge fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts, and the intriguing "third ghosts", characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities.Comment: 21 pages, LaTe

    The dynamical equivalence of modified gravity revisited

    Full text link
    We revisit the dynamical equivalence between different representations of vacuum modified gravity models in view of Legendre transformations. The equivalence is discussed for both bulk and boundary space, by including in our analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre transformed action coincides with the usual Einstein frame one. We then re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second order theory with a new set of field variables, four tensor fields and one scalar and study its dynamics. For completeness, we also calculate the conformal transformation of the full Jordan frame R+f(G) action. All the appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5. New results added in Section 6. Version to appear in Class. Quantum Gravit

    Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory

    Get PDF
    We analyze black hole thermodynamics in a generalized theory of gravity whose Lagrangian is an arbitrary function of the metric, the Ricci tensor and a scalar field. We can convert the theory into the Einstein frame via a "Legendre" transformation or a conformal transformation. We calculate thermodynamical variables both in the original frame and in the Einstein frame, following the Iyer--Wald definition which satisfies the first law of thermodynamics. We show that all thermodynamical variables defined in the original frame are the same as those in the Einstein frame, if the spacetimes in both frames are asymptotically flat, regular and possess event horizons with non-zero temperatures. This result may be useful to study whether the second law is still valid in the generalized theory of gravity.Comment: 14 pages, no figure

    Higher-Derivative Boson Field Theories and Constrained Second-Order Theories

    Get PDF
    As an alternative to the covariant Ostrogradski method, we show that higher-derivative relativistic Lagrangian field theories can be reduced to second differential-order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac's procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the grounds of a simple scalar model and then its applications to generalized electrodynamics and higher-derivative gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theoriesComment: 31 pages, Plain Te

    The Universality of Einstein Equations

    Get PDF
    It is shown that for a wide class of analytic Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the so--called ``Palatini formalism'', i.e., treating the metric and the connection as independent variables, leads to ``universal'' equations. If the dimension nn of space--time is greater than two these universal equations are Einstein equations for a generic Lagrangian and are suitably replaced by other universal equations at bifurcation points. We show that bifurcations take place in particular for conformally invariant Lagrangians L=Rn/2gL=R^{n/2} \sqrt g and prove that their solutions are conformally equivalent to solutions of Einstein equations. For 2--dimensional space--time we find instead that the universal equation is always the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi--Civita connection of the metric and an additional vectorfield ensuing from conformal invariance. As an example, we investigate in detail some polynomial Lagrangians and discuss their bifurcations.Comment: 15 pages, LaTeX, (Extended Version), TO-JLL-P1/9

    Evidence for Strong Itinerant Spin Fluctuations in the Normal State of CeFeAsO(0.89)F(0.11) Iron-Oxypnictides

    Full text link
    The electronic structure in the normal state of CeFeAsO0.89F0.11 oxypnictide superconductors has been investigated with x-ray absorption and photoemission spectroscopy. All the data exhibit signatures of Fe d-electron itinerancy. Exchange multiplets appearing in the Fe 3s core level indicate the presence of itinerant spin fluctuations. These findings suggest that the underlying physics and the origin of superconductivity in these materials are likely to be quite different from those of the cuprate high-temperature superconductors. These materials provide opportunities for elucidating the role of magnetic fluctuations in high-temperature superconductivity.Comment: Shorter version. Accepted in Phys. Rev. Let

    Brans-Dicke-type theories and avoidance of the cosmological singularity

    Get PDF
    We tudy flat Friedmann-Robertson-Walker cosmology in Brans-Dicke-type theories of gravitation with minimal coupling between the scalar field and the matter fields in the Einstein frame (general relativity with an extra scalar field) for arbitrary values of the Brans-Dicke parameter ω>−3/2\omega>-{3/2}. It is shown that the cosmological singularity occuring in the Einstein frame formulation of this theory is removed in the Jordan frame in the range −3/2<ω<≀−4/3-{3/2}<\omega<\leq-{4/3}. This result is interpreted in the ligth of a viewpoint (first presented in reference gr-qc/9905071) asserting that both Jordan frame and Einstein frame formulations of general relativity are physically equivalent. The implications of the obtained result for string theory are outlined.Comment: 9 pages, LaTeX, no figures. Improved version accepted for publication in PR

    On the Energy-Momentum Tensor of the Scalar Field in Scalar--Tensor Theories of Gravity

    Get PDF
    We study the dynamical description of gravity, the appropriate definition of the scalar field energy-momentum tensor, and the interrelation between them in scalar-tensor theories of gravity. We show that the quantity which one would naively identify as the energy-momentum tensor of the scalar field is not appropriate because it is spoiled by a part of the dynamical description of gravity. A new connection can be defined in terms of which the full dynamical description of gravity is explicit, and the correct scalar field energy-momentum tensor can be immediately identified. Certain inequalities must be imposed on the two free functions (the coupling function and the potential) that define a particular scalar-tensor theory, to ensure that the scalar field energy density never becomes negative. The correct dynamical description leads naturally to the Einstein frame formulation of scalar-tensor gravity which is also studied in detail.Comment: Submitted to Phys. Rev D15, 10 pages. Uses ReVTeX macro
    • 

    corecore