4,060 research outputs found

    Leakage and spillover effects of forest management on carbon storage: theoretical insights from a simple model.

    Get PDF
    Leakage (spillover) refers to the unintended negative (positive) consequences of forest carbon (C) management in one area on C storage elsewhere. For example, the local C storage benefit of less intensive harvesting in one area may be offset, partly or completely, by intensified harvesting elsewhere in order to meet global timber demand. We present the results of a theoretical study aimed at identifying the key factors determining leakage and spillover, as a prerequisite for more realistic numerical studies.We use a simple model of C storage in managed forest ecosystems and their wood products to derive approximate analytical expressions for the leakage induced by decreasing the harvesting frequency of existing forest, and the spillover induced by establishing new plantations, assuming a fixed total wood production from local and remote (non-local) forests combined.We find that leakage and spillover depend crucially on the growth rates, wood product lifetimes and woody litter decomposition rates of local and remote forests. In particular, our results reveal critical thresholds for leakage and spillover, beyond which effects of forest management on remote C storage exceed local effects. Order of magnitude estimates of leakage indicate its potential importance at global scales

    Role of xanthophyll cycle-mediated photoprotection in Arbutus unedo plants exposed to water stress during the Mediterranean summer

    Get PDF
    We analyzed the response of potted strawberry tree (Arbutus unedo L.) seedlings exposed to water stress by withholding water for 10 d (WS). Leaf water potential, net CO2 assimilation, and stomatal conductance decreased with increasing water deficit. A 30 % reduction of chlorophyll (Chl) content in the antenna complexes was observed in WS-plants. Simultaneously, a decline of photochemical efficiency (F-v/F-m) occurred as a result of an excess of solar radiation energy when carbon assimilation was limited by stomata closure due to soil water deficit. The non-photochemical quenching of Chl fluorescence (Phi(NPQ)) significantly increased, as well as the leaf contents of zeaxanthin (Z) and antheraxanthin (A) at the expense of violaxanthin during the WS-period. Elevated predawn contents of de-epoxidized xanthophyll cycle components were associated with a sustained lowering of predawn photosystem 2 efficiency; this suggested an engagement of Z+A in a state primed for energy dissipation. Thus, the ability of strawberry trees to maintain the functionality of the xanthophyll cycle during the Mediterranean summer is an efficient mechanism to prevent irreversible damages to the photosynthetic machinery through thermal energy dissipation in the antenna and the reduction in photochemical efficiency

    Magnetic Excitations in NpCoGa5

    Full text link
    We report the results of inelastic neutron scattering experiments on NpCoGa5_{5}, an isostructural analogue of the PuCoGa5_{5} superconductor. Two energy scales characterize the magnetic response in the antiferromagnetic phase. One is related to a non-dispersive excitation between two crystal field levels. The other at lower energies corresponds to dispersive fluctuations emanating from the magnetic zone center. The fluctuations persist in the paramagnetic phase also, although weaker in intensity. This supports the possibility that magnetic fluctuations are present in PuCoGa5_{5}, where unconventional d-wave superconductivity is achieved in the absence of magnetic order.Comment: 4 pages, 5 figure

    Endothelial cells, endoplasmic reticulum stress and oxysterols

    Get PDF
    Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress

    Dual inhibitory action of trazodone on dorsal raphe serotonergic neurons through 5-HT1A receptor partial agonism and α1-adrenoceptor antagonism

    Get PDF
    Trazodone is an antidepressant drug with considerable affinity for 5-HT1A receptors and α1-adrenoceptors for which the drug is competitive agonist and antagonist, respectively. In this study, we used cell-attached or whole-cell patch-clamp recordings to characterize the effects of trazodone at somatodendritic 5-HT1A receptors (5-HT1AARs) and α1-adrenoceptors of serotonergic neurons in rodent dorsal raphe slices. To reveal the effects of trazodone at α1-adrenoceptors, the baseline firing of 5-HT neurons was facilitated by applying the selective α1-adrenoceptor agonist phenylephrine at various concentrations. In the absence of phenylephrine, trazodone (1-10 μM) concentration-dependently silenced neurons through activation of 5-HT1AARs. The effect was fully antagonized by the selective 5-HT1A receptor antagonist Way-100635. With 5-HT1A receptors blocked by Way-100635, trazodone (1-10 μM) concentration-dependently inhibited neuron firing facilitated by 1 μM phenylephrine. Parallel rightward shift of dose-response curves for trazodone recorded in higher phenylephrine concentrations (10-100 μM) indicated competitive antagonism at α1-adrenoceptors. Both effects of trazodone were also observed in slices from Tph2-/- mice that lack synthesis of brain serotonin, showing that the activation of 5-HT1AARs was not mediated by endogenous serotonin. In whole-cell recordings, trazodone activated 5-HT1AAR-coupled G protein-activated inwardly-rectifying (GIRK) channel conductance with weak partial agonist efficacy (~35%) compared to that of the full agonist 5-CT. Collectively our data show that trazodone, at concentrations relevant to its clinical effects, exerts weak partial agonism at 5-HT1AARs and disfacilitation of firing through α1-adrenoceptor antagonism. These two actions converge in inhibiting dorsal raphe serotonergic neuron activity, albeit with varying contribution depending on the intensity of α1-adrenoceptor stimulation

    Possible mechanism of superconductivity in PuCoGa5 probed by self-irradiation damage

    Get PDF
    Measurements of the electrical resistivity of a polycrystalline PuCoGa5 sample reveal significant modifications of the superconducting properties as a function of time, due to the increase of defects and impurities resulting from self-irradiation damage. More than four years of aging were necessary to detect a deviation from linearity in the time dependence of the critical temperature. The observed behavior is understood in the framework of the Eliashberg theory, confirming the ¿dirty¿ d-wave character which was already suggested by nuclear magnetic resonance. We show that experimental data accumulated so far can be well reproduced by assuming a phononic mechanism for superconductivity, with reasonable values of the electron-phonon coupling and Coulomb pseudopotential. Further experiments are then required to assess the role of spin fluctuations in stabilizing the superconducting state in this compound.JRC.E.6-Actinides researc
    corecore