91 research outputs found

    an optimal algorithm to assess the compliance with the t2s requirement of waste to energy facilities

    Get PDF
    Abstract The gas resulting from the incineration of waste must be raised, after the last injection of combustion air, in a controlled and homogeneous fashion and even under the most unfavorable conditions, to a temperature of at least 850 °C for at least two seconds (Art. 50.2 Directive 2010/75/EU). This norm and its variations (i.e. 1,100 °C for 2 s if the chlorine content of the incinerated waste exceeds 1% by mass), called "T 2s requirement", oblige all Waste-to-Energy (WtE) plant operators to monitor the post-combustion conditions and to turn on auxiliary burners in the occurrence of noncompliance with such a requirement. In a WtE boiler, the determination of the mean temperature reached by combustion gas in the post-combustion zone, after an ideal residence time of 2 s, is carried out by an algorithm implemented in the Distributed Control System (DCS) of the plant. Currently, since many different algorithms are used, it appears that further investigation on this subject is required. This work considers, as a case study, an existing WtE boiler and, by means of a calibrated long-furnace model of the post-combustion zone, investigates all the possible operating conditions as well as their connections with the monitored variables. The most relevant influences on the T 2s temperature are highlighted and some control algorithms are proposed. The results so far obtained show that the T 2s is affected both by boiler load and gas-side fouling in the same way and for the same extent. Therefore, since gas-side fouling in the post-combustion zone is an uncontrollable variable, boiler load is not usable in as input variable of a reliable algorithm. Moreover, the results highlight the significant role that can be played in the algorithm for the estimation of the T 2s by the oxygen content in secondary flue gas

    Non-Natural Linker Configuration in 2,6-Dipeptidyl-Anthraquinones Enhances the Inhibition of TAR RNA Binding/Annealing Activities by HIV-1 NC and Tat Proteins

    Get PDF
    The HIV-1 nucleocapsid (NC) protein represents an excellent molecular target for the development of antiretrovirals by virtue of its well-characterized chaperone activities, which play pivotal roles in essential steps of the viral life cycle. Our ongoing search for candidates able to impair NC binding/annealing activities led to the identification of peptidylanthraquinones as a promising class of nucleic acid ligands. Seeking to elucidate the inhibition determinants and increase the potency of this class of compounds, we have now explored the effects of chirality in the linker connecting the planar nucleus to the basic side chains. We show here that the non-natural linker configuration imparted unexpected TAR RNA targeting properties to the 2,6-peptidyl-anthraquinones and significantly enhanced their potency. Even if the new compounds were able to interact directly with the NC protein, they manifested a consistently higher affinity for the TAR RNA substrate and their TARbinding properties mirrored their ability to interfere with NC-TAR interactions. Based on these findings, we propose that the viral Tat protein, sharing the same RNA substrate but acting in distinct phases of the viral life cycle, constitutes an additional druggable target for this class of peptidyl-anthraquinones. The inhibition of Tat-TAR interaction for the test compounds correlated again with their TAR-binding properties, while simultaneously failing to demonstrate any direct Tat-binding capabilities. These considerations highlighted the importance of TAR RNA in the elucidation of their inhibition mechanism, rather than direct protein inhibition. We have therefore identified anti-TAR compounds with dual in vitro inhibitory activity on different viral proteins, demonstrating that it is possible to develop multitarget compounds capable of interfering with processes mediated by the interactions of this essential RNA domain of HIV-1 genome with NC and Tat proteins

    Retrofitting partial oxyfuel and Integrated Ca-Looping technologies to an existing cement plant: a case study

    Get PDF
    The present document describes the potential retrofit of an existing cement plant with carbon capture technologies applied in two sequential steps. The pathway proposed consists in a first retrofit through partial oxyfuel followed by the integrated calcium looping (CaL) technology. This kind of applications may represent a promising strategy for the decarbonization route in the cement sector without introducing chemical solvents or special components, in particular for existing cement kilns that may need to be revamped. The cement plant selected for this study is the 0.5 Mtcem/y Colleferro facility owned by Italcementi-HeidelbergCement. This study analyses the mass & energy balances of the partial oxyfuel, and the integrated CaL process retrofitted to the existing cement plant. The results of the two CCS technologies are then compared in terms of CO2 emission reduction and energy consumption with the reference plant without CO2 capture. The scope of this analysis is to evaluate the impact of carbon capture technologies on the cement production process. The process simulation software Aspen Plus V10.0® has been employed to develop the model for the three different plant configurations (i.e., the base case w/o carbon capture, the partial oxyfuel mode, and the integrated CaL). The base case has been validated using field measurements coming directly from the Colleferro plant. From this process flow model, the two CCS technologies have been developed according to the specific process requirements. Results show that a maximum reduction in CO2 emissions of 92.4% is possible with the integrated CaL, while the partial oxyfuel enables to capture 71.7% of the CO2 generated in the plant

    Design, Synthesis and Evaluation of Novel Molecular Hybrids between Antiglaucoma Drugs and H2S Donors

    Get PDF
    Glaucoma is a group of eye diseases consisting of optic nerve damage with corresponding loss of field vision and blindness. Hydrogen sulfide (H2S) is a gaseous neurotransmitter implicated in various pathophysiological processes. It is involved in the pathological mechanism of glaucomatous neuropathy and exerts promising effects in the treatment of this disease. In this work, we designed and synthetized new molecular hybrids between antiglaucoma drugs and H2S donors to combine the pharmacological effect of both moieties, providing a heightened therapy. Brinzolamide, betaxolol and brimonidine were linked to different H2S donors. The H2S-releasing properties of the new compounds were evaluated in a phosphate buffer solution by the amperometric approach, and evaluated in human primary corneal epithelial cells (HCEs) by spectrofluorometric measurements. Experimental data showed that compounds 1c, 1d and 3d were the hybrids with the best properties, characterized by a significant and long-lasting production of the gasotransmitter both in the aqueous solution (in the presence of L-cysteine) and in the intracellular environment. Because, to date, the donation of H2S by antiglaucoma H2S donor hybrids using non-immortalized corneal cells has never been reported, these results pave the way to further investigation of the potential efficacy of the newly synthesized compounds

    Heavy Metals Size Distribution in PM10 and Environmental-Sanitary Risk Analysis in Acerra (Italy)

    Get PDF
    The present research has been focused on the evaluation of seasonal changes in mass concentrations and compositions of heavy metals in Particular Matters (PM)10 collected from a typical urban-industrial site in Acerra, a city located in an area called "triangle of death". No significant (p < 0.05) seasonal variation was evidenced for the PM10 concentration, but in all the seasons (except for autumn) exceedances of daily concentrations (50 μg m−3) were observed. Airborne PM was analyzed for these heavy metals: Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn, which represented about 8% of the PM10 concentrations. None of the metals classified by IARC as carcinogenic in humans (group 1) exceeded on average the annual EU's and Italy's limit. For the mentioned heavy metals the enrichment factors (EnFs) were analyzed and highlighted high enrichment for Cd, Sb, Pb, As, Cu and Zn. Principal component analysis (PCA) for the heavy metals in PM10 identified oil combustion, vehicle and industrial emissions as major sources. To assess the health risk related to the inhalation to airborne PM10 metals, we applied the Cancer Risk (CR) and Target Hazard Quotient (THQ). The results showed that the CR was similar for a child and an adult, while the THQ proved to be higher for a child than for an adult. The low PM metals risk in the urban industrial site was in agreement with the ongoing lowering trend of metals in Italy and Europe

    Unsuspected role of the brain morphogenetic gene Otx1 in hematopoiesis

    Get PDF
    Otx1 belongs to the paired class of homeobox genes and plays a pivotal role in brain development. Here, we show that Otx1 is expressed in hematopoietic pluripotent and erythroid progenitor cells. Moreover, bone marrow cells from mice lacking Otx1 exhibit a cell-autonomous impairment of the erythroid compartment. In agreement with these results, molecular analysis revealed decreased levels of erythroid genes that include the SCL and GATA-1 transcription factors. Accordingly, a gain of function of SCL rescues the erythroid deficiency in Otx1-/- mice. Taken together, our findings indicate a function for Otx1 in the regulation of blood cell production. There is growing evidence suggesting that common cellular and molecular mechanisms orchestrate differentiation in various tissues. Homeobox-containing genes seem to be strong candidate genes to regulate a number of developmental processes, including neurogenesis and hematopoiesis. Members of the Otx family (Otx1, Otx2, Otx3, and Crx) are the vertebrate homologues of the Drosophila head gap gene orthodenticle and encode transcription factors containing a bicoid-like homeodomain. They are temporally and spatially regulated during development and seem to be required for proper head and sense organ patterning. Otx1, Otx2, and Otx3 show partially overlapping, but distinct expression patterns, and Otx2, the first to be activated during development, plays a major role in gastrulation and in the early specification of the anterior neural plate. In contrast, Otx1 shows a later onset and is involved in corticogenesis, sense organ development, and pituitary function. Mice bearing targeted deletion of Otx1 are affected by a permanent epileptic phenotype and show multiple brain abnormalities and morphological defects of the acoustic and visual sense organs. In addition, at the prepubescent stage, they exhibit transient dwarfism and hypogonadism because of low levels of pituitary hormones. In the present study, we have investigated whether Otx1 also plays a role in blood cell production, as several homeobox genes of different families are involved in normal and/or malignant hematopoiesis

    Prolonged NCX activation prevents SOD1 accumulation, reduces neuroinflammation, ameliorates motor behavior and prolongs survival in a ALS mouse model.

    Get PDF
    Abstract Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS

    Structure-activity Relationships Study of Isothiocyanates for H2S Releasing Properties: 3-Pyridyl-Isothiocyanate as a New Promising Cardioprotective Agent

    Get PDF
    Abstract A library of forty-five isothiocyanates, selected for their different chemical properties, has been evaluated for its hydrogen sulfide (H2S) releasing capacity. The obtained results allowed to correlate several factors such as steric hindrance, electronic effects and position of the substituents to the observed H2S production. Moreover, the chemical-physical profiles of the selected compounds have been studied by an in silico approach and from a combination of the obtained results, 3-pyridyl-isothiocyanate (25) has been selected as the most promising one. A detailed pharmacological characterization of its cardioprotective action has been performed. The results herein obtained strongly indicate 3-pyridyl-isothiocyanate (25) as a suitable pharmacological option in anti-ischemic therapy

    Development of 1,2,3-Triazole-Based Sphingosine Kinase Inhibitors and Their Evaluation as Antiproliferative Agents

    Get PDF
    Two series of N-(aryl)-1-(hydroxyalkyl)pyrrolidine-2-carboxamides (2a-2g and 3a-3g) and 1,4-disubstituted 1,2,3-triazoles (5a-5h and 8a-8h) were synthesized. All the compounds, containing a lipophilic tail and a polar headgroup, were evaluated as sphingosine kinase (SphK) inhibitors by assessing their ability to interfere with the acetylcholine (Ach) induced relaxation of aortic rings pre-contracted with phenylephrine. Moreover, their antiproliferative activity was tested on several cell lines expressing both SphK1 and SphK2. Compounds 5h and 8f, identified as the most efficient antiproliferative agents, showed a different selectivity profile, with 8f being selective for SphK1
    • …
    corecore