11 research outputs found

    Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, <it>Peronosclerospora sorghi</it>. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level.</p> <p>Results</p> <p>Among the 55 primers pairs designed from clones from pathotype 3 of <it>P. sorghi</it>, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from <it>P. sorghi</it>, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (<it>P. maydis & P. philippinensis</it>), sugar cane (<it>P. sacchari</it>), pearl millet (<it>Sclerospora graminicola</it>) and rose (<it>Peronospora sparsa</it>) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to <it>P. philippinensis </it>(one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 <it>Peronosclerospora, Peronospora and Sclerospora </it>spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of <it>Peronosclerospora sorghi </it>in cluster I, five isolates of <it>P. maydis </it>and three isolates of <it>P. sacchari </it>in cluster II and five isolates of <it>Sclerospora graminicola </it>in cluster III).</p> <p>Conclusion</p> <p>To our knowledge, this is the first attempt to extensively develop SSR markers from <it>Peronosclerospora </it>genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates.</p

    Sorghum pathology and biotechnology - a fungal disease perspective: Part I. Grain mold, head smut, and ergot

    Get PDF
    Citation: Little, C., Perumal, R., Tesso, T., . . . & Magill, C. (2012). Sorghum Pathology and Biotechnology - A Fungal Disease Perspective: Part II. Anthracnose, Stalk Rot, and Downy Mildew. European Journal of Plant Science and Biotechnology, 6(1), 31-44. http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/EJPSB_6(SI1)/EJPSB_6(SI1)31-44o.pdfThree common sorghum diseases, grain mold, head smut and ergot, each of which is directly related to seed production and quality are covered in this review. Each is described with respect to the causal organism or organisms, infection process, global distribution, pathogen variability and effects on grain production. In addition, screening methods for identifying resistant cultivars and the genetic basis for host resistance including molecular tags for resistance genes are described where possible

    Sorghum pathology and biotechnology - a fungal disease perspective: Part II. Anthracnose, stalk rot, and downy mildew

    Get PDF
    Citation: Tesso, T., Perumal, R., Little, C., . . . Magill, C. (2011). Sorghum pathology and biotechnology - a fungal disease perspective: Part II. Anthracnose, stalk rot, and downy mildew. European Journal of Plant Science and Biotechnology, 6, 31-34.Foliar diseases and stalk rots are among the most damaging diseases of sorghum in terms of lost production potential, thus commanding considerable research time and expenditure. This review will focus on anthracnose, a fungal disease that causes both foliar symptoms and stalk rots along with the stalk rots caused by Fusarium spp. and Macrophomina phaseolina. Although the downy mildews are caused by oomycetes rather than true fungi, recent outbreaks have revealed resistance to previously effective chemical seed treatments and the evolution of new pathogenic races, once again pointing out the need for continuous vigilance. Sorghum diseases are described with respect to the causal organism or organisms, infection process, global distribution, pathogen variability and effects on grain production. In addition, screening methods for identifying resistant cultivars and the genetic basis for host resistance including molecular tags for resistance genes are described where possible along with prospects for future advances in more stable disease control

    A Genome-Wide Association Study of Nigerien and Senegalese Sorghum Germplasm of <i>Exserohilum turcicum</i>, the Causal Agent of Leaf Blight

    No full text
    In Senegal, sorghum ranks third after millet and maize among dryland cereal production and plays a critical role in the daily lives of millions of inhabitants. Yet, the crop’s productivity and profitability are hampered by biotic stresses, including Exserohilum turcicum, causing leaf blight. A total of 101 sorghum accessions collected from Niger and Senegal, SC748-5 and BTx623, were evaluated in three different environments (Kaymor, Kolda, and Ndiaganiao) in Senegal for their reactions against the leaf blight pathogen. The results showed that 11 out of the 101 accessions evaluated exhibited 100% incidence, and the overall mean incidence was 88.4%. Accession N15 had the lowest incidence of 50%. The overall mean severity was 31.6%, while accessions N15, N43, N38, N46, N30, N28, and N23 from Niger recorded the lowest severity levels, ranging from 15.5% to 25.5%. Accession N15 exhibited both low leaf blight incidence and severity, indicating that it may possess genes for resistance to E. turcicum. Also, the accessions evaluated in this study were sequenced. A GWAS identified six novel single-nucleotide polymorphisms (SNPs) associated with an average leaf blight incidence rate. The candidate genes were found in chromosomes 2, 3, 5, 8, and 9. Except for SNP locus S05_48064154, all five SNPs associated with the leaf blight incidence rate were associated with the plant defense and stress responses. In conclusion, the candidate genes identified could offer additional options for enhancing plant resistance against E. turcicum through plant breeding or gene editing
    corecore