68 research outputs found

    Qinghai-like H5N1 from Domestic Cats, Northern Iraq

    Get PDF

    Metal Chelates of Diacetylacetanilide

    Get PDF
    694-69

    Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum L.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers

    Get PDF
    Efforts have been made to use the integrated application of bio-, organic and inorganic nitrogen (N)-fertilizers to decrease waste accumulation, and to minimize nutrient losses and yield contamination with heavy metals for human nutrition and health. Therefore, a field experiment was conducted to assess the effect of integrated applications of organic manures, bio-fertilizer and/or mineral-N fertilizers on growth, yield, some chemical constituents and shoot and yielded grain heavy metal contents of wheat (Triticum aestivum L. cv. Sakha 93) plants grown under salinity stress (ECe = 7.84 dS m-1). Results showed that, the treatment comprised of ⅓NH4NO3 (55 kg N ha-1) + Cerealine (bio-fertilizer; 4 Kg ha-1) + cattle manure (10 t ha-1) was found to be most effective, producing the best status of growth characteristics, osmoprotectants concentrations, essential nutrient contents, shoot heavy metal concentrations, and grain yield and its content of heavy metals compared to the all other treatments. The treatment comprised of Cerealine (4 Kg ha-1) + cattle manure (20 t ha-1) was occupied the second order. We can recommend to use the integrated treatment of ⅓NH4NO3 (55 kg N ha-1) + Cerealine (bio-fertilizer; 4 Kg ha-1) + cattle manure (10 t ha-1) effectively in saline soils to improve wheat growth and yield with minimum contents of heavy metals for human health and nutrition

    Performance of combined cycle power plant

    Get PDF
    This study is intended to investigate the most effective parameters that affect the performance of combined cycle power plants. The performance of the combined cycle power plant depends on various operating parameters. The power output and efficiency both depend on the operation of the Brayton Cycle. Besides the power output and efficiency, there are different losses which occur in different components of the plant. These are based on the first and second law of thermodynamics. The second law approach gives a better understanding of different losses and optimization of the system for higher power output and efficiency. Hence the effect of different parameters on the performance of combined cycle is reviewed in this study

    H5N1 Clade 2.2 Polymorphism Tracing Identifies Influenza Recombination and Potential Vaccine Targets

    Get PDF
    Highly pathogenic Influenza A H5N1 was first identified in Guangdong Province in 1996, followed by human cases in Hong Kong in 1997 1. The number of confirmed human cases now exceeds 300 and the associated Case Fatality Rate exceeds 60% 2. The genetic diversity of the serotype continues to increase. Four distinct clades or sub-clades have been linked to human cases 3.4. The gradual genetic changes identified in the sub-clades have been attributed to copy errors by viral encoded polymerases that lack an editing function, thereby resulting in antigenic drift 5. We traced polymorphism acquisition in Clade 2.2 sequences. We report here the concurrent acquisition of the same polymorphism by multiple, genetically distinct, Clade 2.2 sub-clades in Egypt, Russia and Ghana. These changes are not easily explained by the current theory of “random mutation” through copy error, and are more easily explained by recombination with a common source. This conclusion is supported by additional polymorphisms shared by Clade 2.2 isolates in Egypt, Nigeria and Germany including aggregation of regional polymorphisms from each of these areas into a single Nigerian human hemagglutinin gene

    Concurrent Acquisition of a Single Nucleotide Polymorphism in Diverse Influenza H5N1 Clade 2.2 Sub-clades

    Get PDF
    Highly pathogenic Influenza A H5N1 was first identified in Guangdong Province in 1996, followed by human cases in Hong Kong in 1997. The number of confirmed human cases now exceeds 300, and the associated Case Fatality Rate exceeds 60%. The genetic diversity of the serotype continues to increase. Four distinct clades or sub-clades have been linked to human cases. The gradual genetic changes identified in the sub-clades have been attributed to copy errors by viral encoded polymerases that lack an editing function, thereby resulting in antigenic drift. We report here the concurrent acquisition of the same polymorphism by multiple, genetically distinct, clade 2.2 sub-clades in Egypt, Russia, and Ghana. These changes are not easily explained by the current theory of “random mutation” through copy error, and are more easily explained by recombination with a common source. This conclusion is supported by additional polymorphisms shared by clade 2.2 isolates in Egypt and Germany

    Aggregation of Single Nucleotide Polymorphisms in a Human H5N1 Clade 2.2 Hemagglutinin

    Get PDF
    The evolution of H5N1 has attracted significant interest 1-4 due to linkages with avian 5,6 and human infections 7,8. The basic tenets of influenza genetics 9 attribute genetic drift to replication errors caused by a polymerase complex that lacks a proof reading function. However, recent analysis 10 of swine influenza genes identifies regions copied with absolute fidelity for more than 25 years. In addition, polymorphism tracing of clade 2.2 H5N1 single nucleotide polymorphisms identify concurrent acquisition 11 of the same polymorphism onto multiple genetic backgrounds in widely dispersed geographical locations. Here we show the aggregation of regional clade 2.2 polymorphisms from Germany, Egypt, and sub-Sahara Africa onto a human Nigerian H5N1 hemagglutinin (HA), implicating recombination in the dispersal and aggregation of single nucleotide polymorphisms from closely related genomes

    Aggregation of Single Nucleotide Polymorphisms in a Human H5N1 Clade 2.2 Hemagglutinin

    Get PDF
    The rapid evolution of the H5N1 serotype of avian influenza has been explained by a mechanism involving the selection of single nucleotide polymorphisms generated by copy errors. The recent emergence of H5N1 Clade 2.2 in fifty countries, offered a unique opportunity to view the acquisition of new polymorphism in these evolving genomes. We analyzed the H5N1 hemagglutinin gene from a fatal human case from Nigeria in 2007. The newly emerged polymorphisms were present in diverse H5N1 isolates from the previous year. The aggregation of these polymorphisms from clade 2.2 sub-clades was not supported by recent random mutations, and was most easily explained by recombination between closely related sequences

    Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses

    Get PDF
    The panzootic caused by A/goose/Guangdong/1/96-lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human-to-human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human-to-human transmissibility and impact on human health should such human-to-human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts
    corecore