25 research outputs found

    A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response

    Get PDF
    Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.National Institutes of Health (U.S.) (New Innovator Award)Smith Family FoundationDamon Runyon Cancer Research FoundationSearle Scholars ProgramNational Institutes of Health (U.S.) (1R01CA119176-01

    Association of insularity and body condition to cloacal bacteria prevalence in a small shorebird

    Get PDF
    Do islands harbour less diverse disease communities than mainland? The island biogeography theory predicts more diverse communities on mainland than on islands due to more niches, more diverse habitats and availability of greater range of hosts. We compared bacteria prevalences ofCampylobacter,ChlamydiaandSalmonellain cloacal samples of a small shorebird, the Kentish plover (Charadrius alexandrinus) between two island populations of Macaronesia and two mainland locations in the Iberian Peninsula. Bacteria were found in all populations but, contrary to the expectations, prevalences did not differ between islands and mainland. Females had higher prevalences than males forSalmonellaand when three bacteria genera were pooled together. Bacteria infection was unrelated to bird's body condition but females from mainland were heavier than males and birds from mainland were heavier than those from islands. Abiotic variables consistent throughout breeding sites, like high salinity that is known to inhibit bacteria growth, could explain the lack of differences in the bacteria prevalence between areas. We argue about the possible drivers and implications of sex differences in bacteria prevalence in Kentish plovers

    Oligodeoxynucleotides Can Transiently Up- and Downregulate CHS Gene Expression in Flax by Changing DNA Methylation in a Sequence-Specific Manner

    No full text
    Chalcone synthase (CHS) has been recognized as an essential enzyme in the phenylpropanoid biosynthesis pathway. Apart from the leading role in the production of phenolic compounds with many valuable biological activities beneficial to biomedicine, CHS is well appreciated in science. Genetic engineering greatly facilitates expanding knowledge on the function and genetics of CHS in plants. The CHS gene is one of the most intensively studied genes in flax. In our study, we investigated engineering of the CHS gene through genetic and epigenetic approaches. Considering the numerous restrictions concerning the application of genetically modified (GM) crops, the main purpose of this research was optimization of the plant's modulation via epigenetics. In our study, plants modified through two methods were compared: a widely popular agrotransformation and a relatively recent oligodeoxynucleotide (ODN) strategy. It was recently highlighted that the ODN technique can be a rapid and time-serving antecedent in quick analysis of gene function before taking vector-mediated transformation. In order to understand the molecular background of epigenetic variation in more detail and evaluate the use of ODNs as a tool for predictable and stable gene engineering, we concentrated on the integration of gene expression and gene-body methylation. The treatment of flax with a series of short oligonucleotides homologous to a different part of CHS gene isoforms revealed that those directed to regulatory gene regions (5′- and 3′-UTR) activated gene expression, directed to non-coding region (introns) caused gen activity reduction, while those homologous to a coding region may have a variable influence on its activity. Gene expression changes were accompanied by changes in its methylation status. However, only certain (CCGG) motifs along the gene sequence were affected. The analyzed DNA motifs of the CHS flax gene are more accessible for methylation when located within a CpG island. The methylation motifs also led to rearrangement of the nucleosome location. The obtained results suggest high specificity of ODN action and establish a potential valuable alternative for improvement of crops

    Transgenerational Perpetuation of CHS Gene Expression and DNA Methylation Status Induced by Short Oligodeoxynucleotides in Flax (Linum usitatissimum)

    No full text
    Over two decades ago, short oligodeoxynucleotides (ODNs) were proven to be an effective and rapid technique for analysis of gene function without interference in the plant genome. Our previous research has shown the successful regulation of chalcone synthase (CHS) gene expression in flax by ODN technology. The CHS gene encodes a pivotal enzyme in flavonoid biosynthesis. The manipulation of its transcript level was the result of the specific methylation status developed after treatment with ODNs. In further analysis of the application of oligodeoxynucleotides in plants, we will focus on maintaining the methylation status induced originally by ODNs homologous to the regulatory regions of the CHS gene in flax. This article reports the latest investigation applied to stabilization and inheritance of the epigenetic marks induced by plants’ treatment with ODNs. The methylation status was analyzed in the particular CCGG motifs located in the CHS gene sequence. Individual plants were able to maintain alterations induced by ODNs. In order to confirm the impact of methylation marks on the nucleosome rearrangement, chromatin accessibility assay was performed. The perpetuation of targeted plant modulation induced by ODNs exhibits strong potential for improving crops and intensified application for medicine, nutrition and industry

    Genetically Modified Flax Expressing NAP-SsGT1 Transgene: Examination of Anti-Inflammatory Action

    No full text
    The aim of the work was to define the influence of dietary supplementation with GM (genetically modified) GT#4 flaxseed cake enriched in polyphenols on inflammation development in mice liver. Mice were given ad libitum isoprotein diets: (1) standard diet; (2) high-fat diet rich in lard, high-fat diet enriched with 30% of (3) isogenic flax Linola seed cake; and (4) GM GT#4 flaxseed cake; for 96 days. Administration of transgenic and isogenic seed cake lowered body weight gain, of transgenic to the standard diet level. Serum total antioxidant status was statistically significantly improved in GT#4 flaxseed cake group and did not differ from Linola. Serum thiobarbituric acid reactive substances, lipid profile and the liver concentration of pro-inflammatory cytokine tumor necrosis factor-α were ameliorated by GM and isogenic flaxseed cake consumption. The level of pro-inflammatory cytokine interferon-γ did not differ between mice obtaining GM GT#4 and non-GM flaxseed cakes. The C-reactive protein concentration was reduced in animals fed GT#4 flaxseed cake and did not differ from those fed non-GM flaxseed cake-based diet. Similarly, the liver structure of mice consuming diets enriched in flaxseed cake was improved. Dietetic enrichment with GM GT#4 and non-GM flaxseed cakes may be a promising solution for health problems resulting from improper diet

    Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats

    No full text
    Flaxseed cake containing antioxidants is a valuable dietary component. Its nutritional effect may be diminished by the presence of anti-nutrients. The work was aimed at determining the effect of different contents of flaxseed cake in diets and their administration period on the development of rats and selected parameters of their health status. Diets with 15% and 30% addition of genetically modified (GM) flax seed cake with enhanced synthesis of polyphenols, as well as Linola non-GM flax were administered in short-term (33 days) and long-term (90 days) experiments. The 30% addition of flaxseed cake reduced digestibility of dietary nutrients, GM flaxseed cake lowered body weight gains. The relative weight of selected organs, hematological blood markers and serum activities of aspartate and alanine aminotransferases (AST, ALT) were not affected. Flaxseed cake consumption reduced serum concentration of albumins and increased globulins. Administration of 30% flaxseed cake improved plasma total antioxidant status and 30% GM flaxseed cake lowered liver thiobarbituric acid reactive substances. The activities of superoxide dismutase in erythrocytes, glutathione peroxidase in plasma and the liver concentration of 8-oxo-2′-deoxyguanosine were not changed. Most morphometric parameters of the small intestine did not differ between feeding groups. The administration of diets with 30% addition of flaxseed cake for 90 days improved the antioxidant status in rats

    Linseed Silesia, Diverse Crops for Diverse Diets. New Solutions to Increase Dietary Lipids in Crop Species

    No full text
    The aim of the work was to compare the new variety of oil flax (Silesia) with already cultivated varieties in terms of plant productivity, oil content, fatty acid composition and significant secondary metabolites. The analyzed linseed varieties are characterized by low (Linola), medium (Silesia) and high (Szafir) content of omega-3 fatty acids. Special attention was paid to the quality of the oil and the characteristics that determine its stability (reduction of susceptibility to oxidation). A number of antioxidant compounds of secondary metabolism (simple phenols, phenolic acids, flavonoids, tannins) were identified in the linseed oils. All of these compounds can affect lipid oxidation by a mechanism that attenuates initiating radicals such as hydroxyl or forms an oxidizing primary product such as peroxides. Chelation of metal ions may also be involved in lipid oxidation. We propose a mechanism that encompasses all these processes and facilitates understanding of the complex relationships between them. The general thesis is that the ratio of polyunsaturated fatty acids is associated with a better metabolic state of flaxseed, and thus with a higher nutritional value. In addition, we find a number of specialized secondary metabolites characteristic of the flax studied, which could be useful for chemotaxonomy
    corecore