14 research outputs found

    Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU

    Get PDF
    Cities across the globe recognise their role in climate mitigation and are acting to reduce carbon emissions. Knowing whether cities set ambitious climate and energy targets is critical for determining their contribution towards the global 1.5 °C target, partly because it helps to identify areas where further action is necessary. This paper presents a comparative analysis of the mitigation targets of 327 European cities, as declared in their local climate plans. The sample encompasses over 25% of the EU population and includes cities of all sizes across all Member States, plus the UK. The study analyses whether the type of plan, city size, membership of climate networks, and its regional location are associated with different levels of mitigation ambition. Results reveal that 78% of the cities have a GHG emissions reduction target. However, with an average target of 47%, European cities are not on track to reach the Paris Agreement: they need to roughly double their ambitions and efforts. Some cities are ambitious, e.g. 25% of our sample (81) aim to reach carbon neutrality, with the earliest target date being 2020.90% of these cities are members of the Climate Alliance and 75% of the Covenant of Mayors. City size is the strongest predictor for carbon neutrality, whilst climate network(s) membership, combining adaptation and mitigation into a single strategy, and local motivation also play a role. The methods, data, results and analysis of this study can serve as a reference and baseline for tracking climate mitigation ambitions across European and global cities

    Capturing hedgerow structure and flowering abundance with UAV remote sensing

    No full text
    Hedgerows are an abundant and ecologically important feature of many rural areas. Their biodiversity value depends on composition, structure and availability of food resources, which can be significantly impacted by poor management. However, information about hedgerow condition is very limited due to field surveys being costly and labour-intensive. Unmanned aerial vehicles (UAVs) equipped with miniaturized cameras could prove a more cost-effective and time-efficient hedgerow surveying solution while preserving a high level of detail unattainable with airborne or satellite sensors. This study explored whether UAV remote sensing is a viable alternative for performing hedgerow condition surveys at local scale, focusing on hedgerow structure and flowering abundance. We acquired UAV Red, Green and Blue (RGB) and multispectral nadir and oblique imagery of structurally different hedgerows and used them to generate 3D point clouds and models with SfM workflow. Height thresholding allowed extraction of hedgerow extents, with root-mean-square error (RMSE) of height and width ranging from 0.11 to 0.23 m. RGB flower classification showed poor relationship with ground measurements (R2 = 0.31–0.42) due to confusion with woody material of hedgerows. Inclusion of a near-infrared channel in multispectral imagery significantly improved the relationship (R2 = 0.68–0.75, RMSE = 10%). Our study shows UAV remote sensing has high potential for performing detailed surveys of hedgerows, providing better characterization of structural variations and distribution of flowers than traditional ground surveys due to larger coverage. More comprehensive understanding of hedgerow, or other vegetated buffer strips, conditions offered by UAV surveys can enable better informed decisions on habitat management and biodiversity conservation in rural areas. Acquisitions over larger areas, potentially integrated with satellite remote sensing, can allow assessment of hedgerow connectivity over farm to landscape scales, contributing to better understanding of the hedgerow network and its role as a wildlife corridor

    Ephemeral sand river flow detection using satellite optical remote sensing

    No full text
    Ephemeral sand rivers are common throughout the world's dryland regions, often providing a water source where alternatives are unavailable. Alluvial aquifer recharge results from rare surface water flows. Assessment of surface flow frequency using traditional methods (rain or flow gauges)requires a high-density monitoring network, which is rarely available. This study aimed to determine if satellite optical imagery could detect infrequent surface flows to estimate recharge frequency. Well-used sensors (Landsat and MODiS)have insufficiently high spatio-temporal resolution to detect often short-lived flows in narrow sand rivers characteristic of drylands. Therefore, Sentinel-2 offering 10 m spatial resolution was used for the Shingwidzi River, Limpopo, South Africa. Based on an increase of Normalised Difference Water Index relative to the dry season reference value, detection of surface flows proved feasible with overall accuracy of 91.2% calculated against flow gauge records. The methodology was subsequently tested in the ungauged Molototsi River where flows were monitored by local observers with overall accuracy of 100%. High spatial and temporal resolution allowed for successful detection of surface water, even when flow had receded substantially and when the rivers were partially obstructed by clouds. The presented methodology can supplement monitoring networks where sparse rainfall or flow records exist

    The benefits and negative impacts of citizen science applications to water as experienced by participants and communities

    No full text
    Citizen science is proliferating in the water sciences with increasing public involvement in monitoring water resources, climate variables, water quality, and in mapping and modeling exercises. In addition to the well-reported scientific benefits of such projects, in particular solving data scarcity issues, it is common to extol the benefits for participants, for example, increased knowledge and empowerment. We reviewed 549 publications concerning citizen science applications in the water sciences to examine personal benefits and motivations, and wider community benefits. The potential benefits of involvement were often simply listed without explanation or investigation. Studies that investigated whether or not participants and communities actually benefitted from involvement, or experienced negative impacts, were uncommon, especially in the Global South. Assuming certain benefits will be experienced can be fallacious as in some cases the intended benefits were either not achieved or in fact had negative impacts. Identified benefits are described and we reveal that more consideration should be given to how these benefits interrelate and how they build community capitals to foster their realization in citizen science water projects. Additionally, we describe identified negative impacts showing they were seldom considered though they may not be uncommon and should be borne in mind when implementing citizen science. Given the time and effort commitment made by citizen scientists for the benefit of research, there is a need for further study of participants and communities involved in citizen science applications to water, particularly in low-income regions, to ensure both researchers and communities are benefitting. This article is categorized under: Human Water > Human Water

    Factors Influencing Temperature Measurements from Miniaturized Thermal Infrared (TIR) Cameras: A Laboratory-Based Approach

    No full text
    The workflow for estimating the temperature in agricultural fields from multiple sensors needs to be optimized upon testing each type of sensor’s actual user performance. In this sense, readily available miniaturized UAV-based thermal infrared (TIR) cameras can be combined with proximal sensors in measuring the surface temperature. Before the two types of cameras can be operationally used in the field, laboratory experiments are needed to fully understand their capabilities and all the influencing factors. We present the measurement results of laboratory experiments of UAV-borne WIRIS 2nd GEN and handheld FLIR E8-XT cameras. For these uncooled sensors, it took 30 to 60 min for the measured signal to stabilize and the sensor temperature drifted continuously. The drifting sensor temperature was strongly correlated to the measured signal. Specifically for WIRIS, the automated non-uniformity correction (NUC) contributed to extra uncertainty in measurements. Another problem was the temperature measurement dependency on various ambient environmental parameters. An increase in the measuring distance resulted in the underestimation of surface temperature, though the degree of change may also come from reflected radiation from neighboring objects, water vapor absorption, and the object size in the field of view (FOV). Wind and radiation tests suggested that these factors can contribute to the uncertainty of several Celsius degrees in measured results. Based on these indoor experiment results, we provide a list of suggestions on the potential practices for deriving accurate temperature data from radiometric miniaturized TIR cameras in actual field practices for (agro-)environmental research

    Use of Miniature Thermal Cameras for Detection of Physiological Stress in Conifers

    No full text
    Tree growth and survival predominantly depends on edaphic and climatic conditions, thus climate change will inevitably influence forest health and growth. It will affect forests directly, for example, through extended periods of drought, and indirectly, such as by affecting the distribution and abundance of forest pathogens and pests. Developing ways of early detection and monitoring of tree stress is crucial for effective protection of forest stands. Thermography is one of the techniques that can be used for monitoring changes in the physiological state of plants; however, in forestry, it has not been widely tested or utilized. The main challenge rises from the need for high spatial resolution data. Newly emerging technologies, such as unmanned aerial vehicles (UAVs) could aid in provision of the required data. However, their main constraint is the limited payload, requiring the use of miniature sensors. This paper investigates whether a miniature microbolometer thermal camera, designed for a UAV platform, can provide reliable canopy temperature measurements of conifers. Furthermore, it explores whether there is a distinction in whole canopy temperature between the control and the stressed trees, assessing the potential of low-cost thermography for investigating stress in conifers. Two experiments on young larch trees, with induced drought stress, were performed. The plants were imaged in a greenhouse setting, and readings from a set of thermocouples attached to the canopy were used as a method of validation. Following calibration and a basic normalization for background radiation, both the spatial and temporal variation of canopy temperature was well characterized. Very mild stress did not exhibit itself, as the temperature readings for both stressed and control plants were similar. However, with a higher stress level, there was a clear distinction (temperature difference of 1.5 °C) between the plants, showing potential for using low-cost sensors to investigate tree stress

    Mean Shift Segmentation Assessment for Individual Forest Tree Delineation from Airborne Lidar Data

    No full text
    Airborne lidar has been widely used for forest characterization to facilitate forest ecological and management studies. With the availability of increasingly higher point density, individual tree delineation (ITD) from airborne lidar point clouds has become a popular yet challenging topic, due to the complexity and diversity of forests. One important step of ITD is segmentation, for which various methodologies have been studied. Among them, a long proven image segmentation method, mean shift, has been applied directly onto 3D points, and has shown promising results. However, there are variations among those who implemented the algorithm in terms of the kernel shape, adaptiveness and weighting. This paper provides a detailed assessment of the mean shift algorithm for the segmentation of airborne lidar data, and the effect of crown top detection upon the validation of segmentation results. The results from three different datasets revealed that a crown-shaped kernel consistently generates better results (up to 7 percent) than other variants, whereas weighting and adaptiveness do not warrant improvements

    RIVER MORPHOLOGY MONITORING OF A SMALL-SCALE ALPINE RIVERBED USING DRONE PHOTOGRAMMETRY AND LIDAR

    Get PDF
    An efficient alternative to labour-intensive terrestrial and costly airborne surveys is the use of small, inexpensive Unmanned Aerial Vehicles (UAVs) or Remotely Piloted Aerial Systems (RPAS). These low-altitude remote sensing platforms, commonly known as drones, can carry lightweight optical and LiDAR sensors. Even though UAV systems still have limited endurance, they can provide a flexible and relatively inexpensive monitoring solution for a limited area of interest. This study investigated the applicability of monitoring the morphology of a frequently changing glacial stream using high-resolution topographic surface models derived from low-altitude UAV-based photogrammetry and LiDAR. An understanding of river-channel morphology and its response to anthropogenic and natural disturbances is imperative for effective watershed management and conservation. We focus on the data acquisition, processing workflow and highlight identified challenges and shortcomings. Additionally, we demonstrate how LiDAR data acquisition simulations can help decide which laser scanning approach to use and help optimise data collection to ensure full coverage with desired level of detail. Lastly, we showcase a case study of 3D surface change analysis in an alpine stream environment with UAV-based photogrammetry. The datasets used in this study were collected as part of the ISPRS Summer School of Alpine Research, which will continue to add new data layers on a biyearly basis. This growing data repository is freely available for research

    Monitoring riverine traffic from space: The untapped potential of remote sensing for measuring human footprint on inland waterways

    No full text
    Mass urbanisation and intensive agricultural development across river deltas have driven ecosystem degradation, impacting deltaic socio-ecological systems and reducing their resilience to climate change. Assessments of the drivers of these changes have so far been focused on human activity on the subaerial delta plains. However, the fragile nature of deltaic ecosystems and the need for biodiversity conservation on a global scale require more accurate quantification of the footprint of anthropogenic activity across delta waterways. To address this need, we investigated the potential of deep learning and high spatiotemporal resolution satellite imagery to identify river vessels, using the Vietnamese Mekong Delta (VMD) as a focus area. We trained the Faster R-CNN Resnet101 model to detect two classes of objects: (i) vessels and (ii) clusters of vessels, and achieved high detection accuracies for both classes (f-score = 0.84–0.85). The model was subsequently applied to available PlanetScope imagery across 2018–2021; the resultant detections were used to generate monthly, seasonal and annual products mapping the riverine activity, termed here the Human Waterway Footprint (HWF), with which we showed how waterborne activity has increased in the VMD (from approx. 1650 active vessels in 2018 to 2070 in 2021 - a 25 % increase). Whilst HWF values correlated well with population density estimates (R 2 = 0.59–0.61, p &lt; 0.001), many riverine activity hotspots were located away from population centres and varied spatially across the investigated period, highlighting that more detailed information is needed to fully evaluate the extent, and type, of human footprint on waterways. High spatiotemporal resolution satellite imagery in combination with deep learning methods offers great promise for such monitoring, which can subsequently enable local and regional assessment of environmental impacts of anthropogenic activities on delta ecosystems around the globe. </p
    corecore