10 research outputs found

    Rhizobacterial volatile organic compounds implication in Brachypodium distachyon response to phosphorus deficiency

    Full text link
    In agriculture, phosphorus (P) is considered as the second most growth-limiting macronutrient after nitrogen. However, P fertilizers are produced from non-renewable resources. In this context, sustainable production strategies have to be developed to enhance P use efficiency of crops, e.g. based on naturally occurring biotic interactions that limit the negative impacts of P deficiency in soils. Plant growth-promoting rhizobacteria (PGPR) have already revealed their ability to promote plant growth and tolerance to abiotic stresses through many mechanisms. Among them, the bacterial volatile organic compounds-mediated communication between plants and PGPR is still poorly documented. Our research project aims at studying the capacity of a model cereal plant (Brachypodium distachyon (L.) Beauv. Bd21) to face P deficiency in interaction with PGPR. The prerequisite of this project consists in characterizing Bd21 response to P deficiency by measuring plant biomass production and allocation, root system architecture, total phosphorus content, root-secreted and intracellular acid phosphatase activity under various P concentrations. Those results will allow us to define P-limiting conditions, in order to assess PGPR volatiles influence on plant response to P deficiency. This approach will use an ex-vitro co-cultivation system allowing volatiles-mediated interaction and should help us to unravel the ability of rhizobacterial volatiles to enhance plant tolerance to P deficiency

    Two entirely separate worlds

    No full text
    Background Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. Results An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81% increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5%, respectively. Conclusions This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.FRFC 2.4.591.10.F and CTP 180845

    Rhizobacterial volatiles influence root system architecture, biomass production and allocation of the model grass Brachypodium distachyon (L.) P. Beauv.

    Full text link
    Plant growth-promoting rhizobacteria are increasingly considered as a complement of conventional inputs in agricultural systems. Their effects on their host plants are diverse and include volatile-mediated growth enhancement. The present study aims at assessing the effects of bacterial volatile production on the biomass production and the root system architecture of Brachypodium distachyon (L.) Beauv. (line Bd-21). An in vitro experimental set-up allowing plant-bacteria interaction through the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth promotion ability over a 10-day cocultivation period. Using principal component analysis followed by hierarchical clustering and two-way analysis of variance, five groups of bacteria were defined and characterized based on their combined influence on biomass production and root system architecture. The observed effects range from unchanged to highly increased biomass production coupled with increased root length and branching. Primary root length was only increased by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03 which induced a 81% increase in total biomass and enhanced total root length, total secondary root length and total adventitious root length by 88, 196 and 473% respectively. The analysis of the emission kinetics of bacterial volatile organic compounds is underway and should lead to the identification of volatile compounds candidates responsible for the observed growth promotion effects. Taking into account the inherent characteristics of our in vitro system, the next experimental steps are identified and discussed from a fundamental and applied viewpoint

    Comment les composés volatils rhizobactériens influencent-ils l'architecture racinaire ainsi que la production et l'allocation de biomasse de Brachypodium distachyon?

    Full text link
    Plant growth-promoting rhizobacteria are increasingly considered as a complement of conventional inputs in agricultural systems. Their effects on their host plants are diverse and include volatile-mediated growth enhancement. The present study aims at assessing the effects of bacterial volatile production on the biomass production and the root system architecture of Brachypodium distachyon (L.) Beauv. (line Bd-21). An in vitro experimental set-up allowing plant-bacteria interaction through the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth promotion ability over a 10-day cocultivation period. Using principal component analysis followed by hierarchical clustering and two-way analysis of variance, five groups of bacteria were defined and characterized based on their combined influence on biomass production and root system architecture. The observed effects range from unchanged to highly increased biomass production coupled with increased root length and branching. Primary root length was only increased by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03 which induced a 81% increase in total biomass and enhanced total root length, total secondary root length and total adventitious root length by 88, 196 and 473% respectively. The analysis of the emission kinetics of bacterial volatile organic compounds is underway and should lead to the identification of volatile compounds candidates responsible for the observed growth promotion effects. Taking into account the inherent characteristics of our in vitro system, the next experimental steps are identified and discussed from a fundamental and applied viewpoint

    Additional file 1: Figure S1. of Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.

    No full text
    Impact of individual strain volatile compounds on Total Secondary Root Length (A), Total Adventitious Root Length (B) and Secondary Root Density (C). The strains are grouped according to the clusters defined earlier, based on PC. Within each cluster, the strains are ranked in ascending mean value order. Presented values are means of the four experimental replicates (64 or 128 biological replicates +/− confidence interval (α = 5 %) for each strain and the control, respectively). Significant changes compared with the control without bacteria are marked with an asterisk (*). (DOCX 374 kb
    corecore