42 research outputs found

    Proteomic Profiling of Leukocytes Reveals Dysregulation of Adhesion and Integrin Proteins in Chronic Kidney Disease-Related Atherosclerosis

    Get PDF
    A progressive loss of functional nephrons defines chronic kidney disease (CKD). Complications related to cardiovascular disease (CVD) are the principal causes of mortality in CKD; however, the acceleration of CVD in CKD remains unresolved. Our study used a complementary proteomic approach to assess mild and advanced CKD patients with different atherosclerosis stages and two groups of patients with different classical CVD progression but without renal dysfunction. We utilized a label-free approach based on LC-MS/MS and functional bioinformatic analyses to profile CKD and CVD leukocyte proteins. We revealed dysregulation of proteins involved in different phases of leukocytes' diapedesis process that is very pronounced in CKD's advanced stage. We also showed an upregulation of apoptosis-related proteins in CKD as compared to CVD. The differential abundance of selected proteins was validated by multiple reaction monitoring, ELISA, Western blotting, and at the mRNA level by ddPCR. An increased rate of apoptosis was then functionally confirmed on the cellular level. Hence, we suggest that the disturbances in leukocyte extravasation proteins may alter cell integrity and trigger cell death, as demonstrated by flow cytometry and microscopy analyses. Our proteomics data set has been deposited to the ProteomeXchange Consortium via the PRIDE repository with the data set identifier PXD018596.Peer reviewe

    Applying Proteomics and Integrative “Omics” Strategies to Decipher the Chronic Kidney Disease-Related Atherosclerosis

    No full text
    Patients with chronic kidney disease (CKD) are at increased risk of atherosclerosis and premature mortality, mainly due to cardiovascular events. However, well-known risk factors, which promote “classical” atherosclerosis are alone insufficient to explain the high prevalence of atherosclerosis-related to CKD (CKD-A). The complexity of the molecular mechanisms underlying the acceleration of CKD-A is still to be defied. To obtain a holistic picture of these changes, comprehensive proteomic approaches have been developed including global protein profiling followed by functional bioinformatics analyses of dysregulated pathways. Furthermore, proteomics surveys in combination with other “omics” techniques, i.e., transcriptomics and metabolomics as well as physiological assays provide a solid ground for interpretation of observed phenomena in the context of disease pathology. This review discusses the comprehensive application of various “omics” approaches, with emphasis on proteomics, to tackle the molecular mechanisms underlying CKD-A progression. We summarize here the recent findings derived from global proteomic approaches and underline the potential of utilizing integrative systems biology, to gain a deeper insight into the pathogenesis of CKD-A and other disorders

    Optimization of Plasma Sample Pretreatment for Quantitative Analysis Using iTRAQ Labeling and LC-MALDI-TOF/TOF

    No full text
    <div><p>Shotgun proteomic methods involving iTRAQ (isobaric tags for relative and absolute quantitation) peptide labeling facilitate quantitative analyses of proteomes and searches for useful biomarkers. However, the plasma proteome's complexity and the highly dynamic plasma protein concentration range limit the ability of conventional approaches to analyze and identify a large number of proteins, including useful biomarkers. The goal of this paper is to elucidate the best approach for plasma sample pretreatment for MS- and iTRAQ-based analyses. Here, we systematically compared four approaches, which include centrifugal ultrafiltration, SCX chromatography with fractionation, affinity depletion, and plasma without fractionation, to reduce plasma sample complexity. We generated an optimized protocol for quantitative protein analysis using iTRAQ reagents and an UltrafleXtreme (Bruker Daltonics) MALDI TOF/TOF mass spectrometer. Moreover, we used a simple, rapid, efficient, but inexpensive sample pretreatment technique that generated an optimal opportunity for biomarker discovery. We discuss the results from the four sample pretreatment approaches and conclude that SCX chromatography without affinity depletion is the best plasma sample preparation pretreatment method for proteome analysis. Using this technique, we identified 1,780 unique proteins, including 1,427 that were quantified by iTRAQ with high reproducibility and accuracy.</p></div

    Collagenase as a useful tool for the analysis of plant cellular peripheries

    No full text
    A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy. On the other hand, potential substrates of collagenase, among them annexin 1 have been recognized. Mass spectra of annexin 1 obtained after collagenase digestion and results from analysis of potential cleavage sites suggested that the mechanism of enzyme cleavage might not depend on the amino acid sequence. Summarizing, collagenase was found to be a very useful tool for exploring molecules involved in the functioning of cellular peripheries

    The experimental workflow shows a systematic comparison of the four approaches for plasma sample pretreatment.

    No full text
    <p>Centrifugal ultrafiltration (Ami50), SCX chromatography with fractionation (SCX), affinity depletion (MARS), and plasma without any fractionation (WF) were performed to reduce the plasma sample complexity. The peptide mixtures generated were analyzed using LC-MALDI-TOF/TOF.</p

    A Venn diagram comparing the results from the WF, Ami50, FT MARS, and SCX approaches in experiments without iTRAQ labeling.

    No full text
    <p>The numbers indicate the proteins identified using each approach. A total of 3,296 unique proteins were identified.</p
    corecore