7 research outputs found
Novel risperidone orally disintegrating minitablets for pediatric use: patient acceptance and dose adjustment
OBJECTIVE:
Risperidone is a potent psychotropic agent has been approved for symptomatic treatment of irritability in children and adolescents with autism spectrum disorders. However, its bitter taste and dose adjustment of liquid dosage forms are a main hurdle for patient acceptance.
SIGNIFICANCE:
Thus, this recent study investigate the formulation of taste masked risperidone orally disintegration minitablets (ODMT) as a way of enhancing patient acceptance.
METHODS:
Taste masked risperidone hydrogenated castor oil or Cetyl alcohol based granules were prepared using a simple melt granulation technique in different drug to lipid ratios; drug release, bitterness score of the prepared granular formulations were evaluated. DSC was also performed to detect the possible drug lipid interaction. The selected lipid-based granules were further compressed into ODMT formulations. Bitterness score was assessed by gustatory sensation test and results were compared to marketed liquid formulations of risperidone.
RESULTS:
All the prepared ODMT formulations showed high content uniformity, with minimum dose fluctuation compared to marketed oral liquid preparations.
CONCLUSION:
In conclusion, risperidone lipid-based granules could be formulated in different ratios by simple techniques and commonly used excipients into taste masked risperidone ODMT with accurate and flexible doses suitable for pediatric use with high taste preference and acceptability
A dual strategy to improve psychotic patients\u27 compliance using sustained release quetiapine oral disintegrating tablets
Quetiapine (QT) is a short acting atypical antipsychotic drug effective in schizophrenia and bipolar disorder. This study aims at designing a novel dosage form of sustained release taste-masked QT orally disintegrating tablets (ODTs) based on solid lipid micro-pellets (SLMPs). QT SLMPs were prepared using the hot melt extrusion technique utilizing three lipid carriers: Compritol, Precirol and white beeswax either alone or in mixtures. They showed sustained QT release and a taste masking effect. The selected QT SLMP was further blended with an aqueous solution containing polyvinylpyrollidone (2.5%), croscarmellose sodium (2%) and mannitol (50%); it was then lyophilized into ODT in a mass ratio of 1:2 respectively. ODTs containing QT SLMPs showed: average wetting time (40.92 s), average oral disintegration time (21.49 s), average hardness (16.85 N) and also imparted suitable viscosity to suspend pellets during lyophilization process. In conclusion, lyophilization is a promising technique for the formulation of multiparticulate systems into ODTs
A dual strategy to improve psychotic patients’ compliance using sustained release quetiapine oral disintegrating tablets
Quetiapine (QT) is a short acting atypical antipsychotic drug effective in schizophrenia and bipolar disorder. This study aims at designing a novel dosage form of sustained release taste-masked QT orally disintegrating tablets (ODTs) based on solid lipid micro-pellets (SLMPs). QT SLMPs were prepared using the hot melt extrusion technique and utilizing three lipid carriers: Compritol, Precirol and white beeswax either alone or in mixtures. They showed sustained QT release and a taste masking effect. The selected QT SLMP was further blended with an aqueous solution containing polyvinylpyrollidone (2.5 %), croscarmellose sodium (2 %) and mannitol (50 %); it was then lyophilized into ODT in a mass ratio of 1:2, respectively. ODTs containing QT SLMPs showed: average wetting time (40.92 s), average oral disintegration time (21.49 s), average hardness (16.85 N) and also imparted suitable viscosity to suspend pellets during the lyophilization process. In conclusion, lyophilization is a promising technique for the formulation of multiparticulate systems into ODTs
Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization
Terbinafine Hcl (TB) is a poorly water soluble antifungal drug. Topical nanoemulsion based gel containing TB was prepared with a view to improve its solubility and antifungal activity. In preparation of the nanoemulsion (NE), excipients were selected based on the solubility study. Peceol was optimized as the oil phase. Tween 80 and propanol were optimized as the surfactant and co-solvent respectively, and were mixed (Smix) in different weight ratios (1:1, 1:2, 1:3, 1:4, 4:1, 3:1 and 2:1, respectively). Pseudoternary phase diagrams were developed and Pecol and Smix were mixed in different weight ratios ranging from 1:9 to 9:1. Based on the NE region of each diagram, the formulae were selected. The formulated nanoemulsions were characterized and evaluated for in vitro drug release and thermodynamic stability. The optimum nanoemulsion formulae containing 10 or 15% w/w oil, 45% w/w Smix (1:2/1:3) and 45-40% w/w aqueous phase) were incorporated into Carbopol 940 gel bases forming three different TB nanoemulsion based emulgel formulae (F1-F3) which were examined for ex vivo drug permeation and in vivo antifungal activity compared to the marketed product; Lamisil® emulgel. The results showed that TB skin permeation from all the prepared nanoemulsion based gel formulae was significantly (p < 0.05) improved in relation to the commercial emulgel. F3 exhibited a superior in vivo antifungal activity over the marketed emulgel for the treatment of Candida infection. Keywords: Terbinafine nanoemulsion, Pseudoternary phase diagrams, Permeation stud
Chitosan and sodium alginate—Based bioadhesive vaginal tablets
Metronidazole was formulated in mucoadhesive vaginal tablets by directly compressing the natural cationic polymer chitosan, loosely cross-linked with glutaraldehyde, together with sodium alginate with or ine cellulose (MCC). Sodium carboxymethylcellulose (CMC) was added to some of the formulations. The drug content in tablets was 20%. Drug dissolution rate studies from tablets were carried out in buffer pH 4.8 and distilled water. Swelling indices and adhesion forces were also measured for all formulations. The formula (FIII) containing 6% chitosan, 24% sodium alginate, 30% sodium CMC, and 20% MCC showed adequate release properties in both media and gave lower values of swelling index compared with the other examined formulations. FIII also proved to have good adhesion properties with minimum applied weights. Moreover, its release properties (% dissolution efficiency, DE) in buffer pH 4.8, as well as release mechanism (n values), were negligibly affected by aging. Thus, this formula may be considered a good candidate for vaginal mucoadhesive dosage forms