9 research outputs found

    Modelling structural and cellular elements and functional responses to lymphatic-delivered cues in a murine lymph node on a chip

    Get PDF
    Lymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures. When challenged, the eLN elicits both robust inflammatory responses and antigen-specific immune activation, showing that the system can differentiate between non specific and antigen-specific stimulation and can be monitored in real time. Beyond immune responses, this model also enables interrogation of changes in stromal cells, thus permitting investigations of all LN cellular components in homeostasis and different disease settings, such as cancer. Here, how LN behavior can be influenced by murine melanoma-derived factors is presented. In conclusion, the eLN model presents a promising platform for in vitro study of LN biology that will enhance understanding of stromal and immune responses in the murine LN, and in doing so will enable development of novel therapeutic strategies to improve LN responses in disease

    MicroRNA-31 is required for astrocyte specification

    Get PDF
    Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis

    Inflight Fluidic Fibre Printing Towards Array and 3D Optoelectronic and Sensing Architectures

    No full text
    Scalability and device-integration have been prevailing issues limiting our ability in harnessing the full potential of small-diameter conducting fibres. We report inflight fluidic fibre printing, a rapid, low-cost route that integrates the entire process of conducting fibre production and fibre-to-circuit connection, in a single step under sub-100 °C ambient atmospheres. Metallic (silver) or organic (PEDOT:PSS) fibres with 1-3 μm diameter are fabricated, and the fibre arrays exhibit over 95 % transmittance in the 350-750 nm region. We exploit combinations of the unique fibre characteristics: directionality, high surface-area-to-volume ratio, and permissiveness, along with transparency and conductivity. Using PEDOT:PSS fibres as a cell-interfaced impedimetricsensor and a moisture sensor, we show that even a single fibre component can achieve complex functions or outperform conventional film-based devices. The capability to design suspended fibres and networks of homo-, hetero- cross-junctions, paves the way to applications includingflow-permissive devices, and 3D optoelectronic and sensor architectures.</div

    Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma.

    No full text
    Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expression is compromised in \u3e72% of all GBM, and for patients, this predicts significantly shortened survival times independent of CDKN2A/B status. We show that miR-31 inhibits NF-κB signaling by targeting TRADD, its upstream activator. Moreover, upon reintroduction, miR-31 significantly reduces tumor burden and lengthens survival times in animal models. As such, our work identifies loss of miR-31 as a novel non-coding tumor-driving event in GBM. Oncotarget 2015 Jul 10; 6(19):17805-16
    corecore