
MicroRNA-31 is Required for Astrocyte Specification

Gordon P. Meares1,Δ, Rajani Rajbhandari2,Δ, Magda Gerigk3, Chih-Liang Tien3, Chenbei 
Chang3, Samuel C. Fehling3, Amber Rowse3, Kayln C. Mulhern3, Sindhu Nair2, G. Kenneth 
Gray3, Nicolas F. Berbari4, Markus Bredel2, Etty N. Benveniste3, and Susan E. Nozell2,*

1Departments of Microbiology, Immunology and Cell Biology, West Virginia University, 
Morgantown, West Virginia, 26506

2Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama 35294

3Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, 
Alabama 35294

4Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202

Abstract

Previously, we determined microRNA-31 (miR-31) is a non-coding tumor suppressive gene 

frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting 

the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of 

miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that 

miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, 

SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and 

SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for 

terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents 

astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by 

reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that 

miR-31 deletions may disrupt astrocyte development and/or homeostasis.
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Introduction

NPCs are the resident precursor cells within the brain. These cells have the ability to self-

renew, are able to proliferate extensively and can differentiate into multiple neuroectodermal 

lineages (Dietrich et al. 2008). In the developing CNS, NPCs are found in the subgranular 

zone (SGZ) and subventricular zone (SVZ). NPCs differentiate in a step-wise process that 

involves patterning, specification, migration and terminal differentiation (Molofsky et al. 

2012). Ultimately, these cells produce lineage-committed progenitors (glial-restricted, 

neuron-restricted, astrocyte and oligodendrocyte precursor cells) that give rise to terminally 

differentiated cells (astroctyes, neurons and oligodendrocytes) (Dietrich et al. 2008). In the 

adult brain, radial glial cells function as NPCs (Alvarez-Buylla et al. 2001; Chaker et al. 

2016; Gallo and Deneen 2014; Maldonado-Soto et al. 2014; Namihira and Nakashima 2013; 

Noctor et al. 2001; Paul et al. 2017; Tome-Garcia et al. 2017). NPCs rely on general stem 

cell factors such as Lin28, Oct4 and SOX2, and tissue specific factors in order to self-renew 

(Aloia et al. 2013; Loh et al. 2006; Ronan et al. 2013; Tiwari et al. 2013). Lin28 is an RNA 

binding protein, while Oct4 and SOX2 are transcription factors (Shyh-Chang and Daley 

2013). Collectively, these proteins promote the expression of genes required for NPC 

renewal, and inhibit the expression of genes that promote differentiation (Aloia et al. 2013; 

Loh et al. 2006). NPC to astrocyte differentiation is mediated by multiple factors/signaling 

molecules, including JAK/STAT3, BMP/Smads, NFIA and SOX9 (Dirks 2006; Gallo and 

Deneen 2014; Kim et al. 2011; Sieber et al. 2009). Together, Smads, STAT3, NFIA and 

SOX9 establish the transcriptional profile that mediates astrocytogenesis (Deneen et al. 

2006; Fukuda et al. 2007; Gallo and Deneen 2014; Glasgow et al. 2014b; Kang et al. 2012).

MiRs are short, endogenous non-coding RNAs that bind to target mRNAs in order to prevent 

their translation or reduce their stability (Lujambio and Lowe 2012). MiR-31 is a non-coding 

tumor suppressor encoded by the MIR31HG gene located at 9p21.3, the most frequently 

deleted region in GBM (Rajbhandari et al. 2015). Previously, we demonstrated that one or 

both copies of MIR31HG are deleted in GBM, and that miR-31 restoration reduced tumor 

growth and improved survival in mouse models of GBM (Rajbhandari et al. 2015). Herein, 

we expand these findings and elaborate on the role of miR-31 during normal astrocyte 

development within the CNS. We find Lin28, Oct4 and SOX2 inhibit miR-31 expression and 

activity in NPCs. However, during astrocytogenesis, STAT3 and SMAD1/5/8 increased the 

levels of miR-31. Alone, exogenous miR-31 can partially promote astrocyte differentiation 

of NPCs; this is in part by targeting the stem cell factor Lin28. In the absence of miR-31, 

NPCs fail to fully differentiate into astrocytes. Finally, in astrocytes, we demonstrate that 

loss of miR-31 prevents astrocyte maturation and causes these cells to assume a more NPC-

like phenotype. Collectively, these data indicate that miR-31 is critical for astrocyte 

development and/or commitment.

Materials and Methods

Reagents

IL-1β and TNF-α were from R & D Systems. The secondary peroxidase-conjugated 

antibodies and enhanced chemiluminescence reagents were purchased from Amersham 

(Arlington Heights, IL). Anti-KLF4, anti-Lin28, anti-Nestin, anti-Oct4 and anti-SOX2 
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antibodies were from Santa Cruz. Anti-Olig2 antibodies were purchased from R & D 

Systems. Anti-GFAP antibodies were from Pharmingen, and anti-Brn2 (POU3F2) and anti-

GAPDH antibodies were from Abcam. Taqman qRT-PCR reagents were from Applied 

Biosystems (Beverly, MA). Sybr green qRT-PCR reagents were from Qiagen (Valencia, 

CA). All other primers were purchased from Integrated DNA Technologies (Iowa City, IA). 

MicroRNA-31 mimic, miR-31 AntagomiR and negative control (CT) miR were purchased 

from Ambion/Life Technologies (Austin, TX). MicroRNAs and shRNA molecules were 

transfected using Lipofectamine RNAiMax Transfection reagent (Life Technologies, Grand 

Island, NY). Control and Lin28 specific shRNA were purchased from Dharmacon.

Immunofluorescence

Where indicated, cells or cryosections were post-fixed in 4% PFA for 5 minutes at room 

temperature followed by three 5 minute washes in PBS followed by a Methanol treatment at 

−20°C for 15 minutes. Sections were then washed with PBS followed by permeabilization 

and blocking with 0.3% Triton X-100 in PBS with 2% donkey serum, 0.02% sodium azide 

and 10 mg/ml bovine serum albumin (BSA). Sections were then labeled with antibodies 

indicated, washed in PBS with 2% normal donkey serum, 0.02% sodium azide and 10 

mg/ml BSA, and incubated in secondary antibody (1:1000, Alex Fluor-594, A-21203, 

Invitrogen, Carlsbad, CA). Nuclei were visualized by DAPI nuclear stain (Invitrogen, 

Carlsbad, CA). Sections were mounted onto glass slides and mounted using DABCO 

mounting media (10 mg of DABCO (D2522; Sigma-Aldrich, St. Louis, MO) in 1 mL of 

PBS and 9 mL of glycerol, and imaged using confocal microscopy (Koemeter-Cox et al. 

2014).

Immunoblotting

Cells were lysed in RIPA buffer with protease inhibitors and protein concentration was 

determined using the BioRad dye-binding protein assay. Equivalent amounts of total protein 

were analyzed by SDS-PAGE with antibodies specified above, as previously described 

(McFarland et al. 2013; Rajbhandari et al. 2015).

Mice and Primary Cell Preparations

Normal primary murine NPCs were prepared as previously described (Meares et al. 2014). 

NPCs were plated in Neurobasal media with Amphotericin (1%), B27 Supplement minus 

vitamin A, Gentamycin (0.25%), L-glutamine (260 mM), EGF (10 ng/ml), and FGF (10 

ng/ml) and cultured as neurospheres. NPC identity was confirmed by flow cytometry using 

antibodies specific for SOX2, Nestin and GFAP. Where appropriate, untreated and treated 

NPCs were grown as adherent cultures on laminin (1.2 μg/ml) and poly-D-lysine (62.5 

μg/ml) coated plates. To induce differentiation, NPCs were cultured with 10% FBS or LIF 

(10 ng/ml) and/or BMP2 (10 ng/ml) for the times indicated. C57BL/6 mice were bred and 

housed in the animal facility at the University of Alabama in Birmingham under the care of 

the animal resources program. Primary murine astrocytes were prepared as previously 

described (Meares et al. 2013). Astrocytes were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% FBS, 16 mM HEPES, 1× nonessential amino acids, 2 mM l-

glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin, and 50 μg/ml gentamicin. 

Astrocytes were separated from microglia by shaking at 400 rpm for 2 h, and astrocyte 
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cultures contained >90% GFAP-positive cells, as determined by immunofluorescence 

microscopy.

Total RNA and microRNA Purification, and Real-Time qRT-PCR

Total RNA was isolated as previously described (McFarland et al. 2013; Rajbhandari et al. 

2015). To assess mRNA expression levels, 1 μg of total RNA was reverse transcribed and 

analyzed by quantitative PCR. Reactions for each sample were performed in triplicate using 

a PCR protocol (95°C activation for 10 min followed by 40 cycles of 95°C for 15s and 60°C 

for 1 min) in an ABI StepOnePlus Detection System (Applied Biosystems). ΔΔCt values for 

genes were examined using Ct values generated by StepOnePlus software (Applied 

Biosystems). miRNA was purified using the miRvana miRNA isolation kit (Invitrogen, 

Grand Island, NY) according to manufacturer’s protocol. For miRNA-31 analyses, 10 ng of 

miRNA was reverse transcribed and analyzed by quantitative PCR using a miR-31 specific 

first strand primer and probe/primer sets purchased from Applied Biosystem (Grand Island, 

NY).

Whole Mount In Situ Hybridization

The X. laevis embryos were collected at neurula stages and analyzed by whole mount in situ 
hybridization analyses for miR-31 and marker expression. In situ hybridization was 

performed as described (Harland 1991; Nie and Chang 2007), using the neural or the 

epidermal probes described previously (Tien et al. 2015). In situ hybridization of horizontal 

sections of embryonic murine brains (E14.5) was performed using a modified method 

(Bonev and Papalopulu 2012).

ChIP Assays

ChIP assays were performed as previously described (Nozell et al. 2008; Rajbhandari et al. 

2015; Tien et al. 2015). Immunoprecipitation was performed with 5 μg of the appropriate 

antibodies, and the immune complexes were absorbed with protein A beads (Upstate Cell 

Signaling Solutions, Charlottesville, VA) blocked with bovine serum albumin and salmon 

sperm DNA. Immunoprecipitated DNA was analyzed by qRT-PCR using Sybr Green 

reagents. Reactions for each sample were performed in triplicate using an ABI StepOnePlus 

Detection System (Applied Biosystems, Foster City, CA) and a PCR protocol comprising an 

initial 10 min incubation at 95°C followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. 

The raw data were analyzed using StepOnePlus software (Applied Biosystems), and ΔΔCt 

values for each gene in each sample were determined.

Statistical Analysis

Student t tests were conducted for comparison of 2 values. Values represent the mean ± SD 

unless otherwise noted. p < 0.05 was considered statistically significant.

Ethics Statement

All animal experiments (C57BL/6, Harlan Laboratories) were performed with the approval 

of the University of Alabama at Birmingham Institutional Animal Care and Use Committee 

(APNs #120908862, #120309368 and #120809198).
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Results

MicroRNA-31 Levels Increase During CNS Development

To understand the potential role of miR-31 during early CNS development, we first utilized 

Xenopus laevis; in this model, CNS development begins with neural plate in-folding 

followed by neural tube closure (Fig. 1A) (Schroeder 1970). As Xenopus embryos transition 

from early- to the mid-stages of neuralation, miR-31 levels become elevated (Fig. 1B). We 

used whole mount in situ hybridization (ISH) to determine which cells express miR-31; 

XK70 (epidermal marker), SOX2 (neural tube marker) and Snail2 (neural crest marker) were 

also analyzed as cell-specific markers (Tien et al. 2015). At the mid neurula phase, the 

pattern of miR-31 expression appeared most similar to that of SOX2 expression, but did not 

appear similar to the patterns of XK70 or Snail2 (Fig. 1C). Double ISH of X. laevis embryos 

confirmed miR-31 (green arrow) was co-expressed with SOX2 (orange arrow) in the neural 

tube, but not with Snail2 (white arrow; right), which marks the neural crest (Fig. 1D). These 

data indicate miR-31 may play an early role in neural but not epidermal or neural crest 

specification.

Next, we assessed the role of miR-31 in later stages of CNS development using mice. 

MiR-31 levels were analyzed from whole murine brain samples of mice aged embryonic (E) 

E15 to parental (P) P70 by qRT-PCR; we found that miR-31 levels increased from E15 to 

P70 (Fig. 1E). We also evaluated Nestin, Lin28B, Oct4 and GFAP mRNA levels. Nestin 

marks NPCs, Lin28 and Oct4 are stem cell markers, and GFAP specifies astrocytes. At these 

same developmental stages, we found that the levels of Nestin, Lin28B, and Oct4 were 

diminished (Fig. 1F), while the levels of GFAP were increased (Fig. 1G). Thus, the levels of 

miR-31 increase during astrocytogenesis (E15–P70) and correlate with elevated GFAP 

levels.

We also evaluated miR-31 expression in the developing mouse brain at E14.5 using ISH; 

samples were counterstained with DAPI to mark cell nuclei (Fig. 2A, blue; i, iii, v). This 

developmental stage (E14.5) marks the neurogenic-to-gliogenic switch (Liu et al. 2002; 

Martynoga et al. 2012); miR-31 was diffusively expressed throughout the brain (Fig. 2A, 

green). MiR-31 levels were notable in the Infudibulum (IF; 2A, i and ii), particularly in the 

ventricular zone (VZ) surrounding the Aqueduct of Sylvius (AQ) (Fig. 2A, i and ii) 

(Schambra et al. 1991). The VZ is formed by multipotent radial glial and/or neural stem 

cells (NSCs) (Rodriguez et al. 2012). MiR-31 expression was also striking in the trigeminal 

ganglion (TG) (Fig. 2A, iii and iv) (Schambra et al. 1991), and ventricular zones (VZ) and 

subventricular zones (SVZ) of the ganglionic eminence (GE) (Fig. 2A, v and vi). The TG is 

a mass of pseudounipolar neurons tightly enveloped by satellite glial cells (Erzurumlu et al. 

2006; Viana 2011; Vit et al. 2006), while the VZ and SVZ of the GE host pools of 

proliferating progenitor cells (Zechel et al. 2014). These data demonstrate that miR-31 is 

expressed in host glial and progenitor cells during the neurogenic-to-gliogenic switch.

MicroRNA-31 is Elevated in Differentiated Astrocytes

To ascertain which cells in the CNS expressed miR-31, we analyzed Gene Expression 

Omnibus (GEO) datasets. In rat, we found miR-31 was significantly more abundant in 
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astrocytes compared to neurons, oligodendrocytes or microglia (GSE34614; Fig. 2B); in 

homo sapiens, miR-31 levels were elevated as astrocytes matured (GSE15888; Fig. 2C). To 

confirm these data, we compared miR-31 levels in primary murine astrocytes and NPCs; 

NPCs were isolated from E15 embryos and astrocytes isolated from newborn mice (P0). The 

murine neurogenic-gliogenic switch occurs at approximately E14.5, and afterwards NPCs 

are largely committed to producing astrocytes and oligodendrocytes (Martynoga et al. 2012; 

Sanosaka et al. 2008). Although miR-31 was detected in both cell types, the levels of 

miR-31 were significantly higher in astrocytes (Fig. 2D). The identity of NPCs and 

astrocytes were confirmed by qRT-PCR and flow cytometry using Olig2, Nestin and SOX2 

as NPC markers and GFAP as a marker of astrocytes (data not shown). Collectively, these 

data indicate that the levels of miR-31 become elevated in the developing CNS, and that 

miR-31 expression is predominantly in astrocytes.

miR-31 is Induced During Differentiation

In order to assess the role of miR-31 during astrocytogenesis in vitro, E14.5 NPCs were 

cultured in the absence or presence of 10% FBS for 3 days in order to induce astrocyte 

differentiation (Obayashi et al. 2009). Without FBS, NPCs grow as loosely adherent cells 

(Fig. 3A, untreated; UT), and express SOX2 (stem cell marker), but only modest GFAP 

(astrocyte marker) (Fig. 3B, UT). After FBS treatment, NPCs adopt a flattened, adherent 

morphology (Fig. 3A, FBS), lose SOX2 reactivity and differentiate into GFAP+ astrocytes 

(Fig. 3B, FBS). We confirmed that GFAP levels were significantly elevated, while those of 

stem cell markers were significantly reduced (Figs. 3C–E, G) via qRT-PCR and 

immunoblotting. The GFAP gene is expressed as multiple alternatively spliced isoforms 

(Fig. 3G) (Thomsen et al. 2013); presently, the significance of these other isoforms is not yet 

clear. Importantly, we determined miR-31 levels increased as NPCs differentiated into 

astrocytes (Fig. 3F). To confirm miR-31 levels increase regardless of the method used to 

differentiate NPCs into astrocytes, NPCs were left untreated (UT) or treated with LIF, 

BMP2, BMP2 + LIF, or FBS (Lee et al. 2008). Alone, LIF modestly increased miR-31 

levels, while BMP2 alone or BMP2 + LIF increased miR-31 to levels comparable to cells 

treated with 10% FBS (Fig. 3H). The levels of miR-31 expression were positively correlated 

with GFAP expression, and inversely correlated with the levels of Lin28 (Fig. 3I). These 

data confirm miR-31 is induced during astrocyte differentiation.

miR-31 is Regulated by Transcription Factors that Regulate NPC-to-Astrocyte 
Differentiation

To understand what factors might regulate miR-31 expression, ECR Browser 

(www.ecrbrowser.dcode.org) compared mouse and human genomes to identify 

evolutionarily conserved regions (ECR) within the MIR31HG promoter; we identified six 

ECR (Fig. 3J, 1–6) upstream of the transcriptional start site (TSS) of MIR31HG; these ECRs 

are approximately 68–70% conserved between mouse and human. Contained within these 

regions were response elements for stem cell factors (Oct4 (ECR 1, 2, 3, 5), SOX2 (ECR 2, 

4), c-Myc (ECR 3)) and transcription factors implicated in astrocyte development (STAT3 

(ECR 2, 3, 4,) and SMAD1/5/8 (ECR 6). We used chromatin immunoprecipitation to 

determine if these transcription factors regulate miR-31 expression in NPCs and/or 

astrocytes. As such, NPCs were grown in the absence (UT) or presence of 10% FBS (FBS) 
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for 3 d as shown in Figs. 3A, B. The levels of c-Myc (Fig. 3K), SOX2 (Fig. 3L) and Oct4 

(Fig. 3M) were elevated in the undifferentiated NPCs compared to FBS treated NPCs. 

Conversely, the levels of SMAD1/5/8 (Fig. 3N) and STAT3 (Fig. 3O) were increased by 

FBS-induced astrocytogenesis compared to NPCs. To correlate these events with active 

transcriptional events, we evaluated EZH2, a subunit of polycomb repressive complex 2 

(PRC2), and tri-methylated lysine 27 of histone 3 (H3K27Me3), which marks 

transcriptionally silent DNA. The levels of both EZH2 (Fig. 3P) and H3K27Me3 (Fig. 3Q) 

were reduced by FBS treatment; these data indicate that the epigenomic environment near 

the MIR31HG promoter is less repressive after FBS treatment. Collectively, these data 

indicate miR-31 is repressed by stem cell factors in NPCs, and is induced by SMAD1/5/8 

and STAT3 during astrocyte development.

Ectopic MiR-31 Expression Induces Partial Astrocyte Differentiation

To assess whether miR-31 promotes or merely coincides with astrocyte differentiation, 

NPCs were transfected with either control miR (CT) or miR-31; we confirmed miR-31 was 

expressed (Fig. 4A), and that this coincided with increased levels of GFAP mRNA (Fig. 4B) 

and protein (Fig. 4E), and reduced levels of Nestin and Lin28 (Figs. 4C–E); in Fig. 4E, 

multiple alternatively spliced GFAP isoforms are detected (Thomsen et al. 2013). Thus, 

exogenous miR-31 produces changes in gene expression associated with astrocyte 

differentiation. To assess whether miR-31 is required for astrocyte differentiation, NPCs 

were transfected with CT miR or AntagomiR-31, and then left untreated (UT) or 

differentiated into astrocytes using 10% FBS (FBS). FBS significantly increased the levels 

of miR-31 (Fig. 4F) and GFAP (Figs. 4G, H), and reduced the levels of Lin28 (Fig. 4H) in 

NPCs expressing CT miR. However, if miR-31 expression was blocked (Fig. 4F), changes 

indicative of astrocyte specification, including elevated and reduced levels of GFAP (Figs. 

4G, H) and Lin28, respectively, (Fig. 4H) were impaired. Astrocytogenesis is accompanied 

by morphological changes including the formation of astrocytic processes (Bolego et al. 

1997; Lippman et al. 2008). Therefore, we measured the length and counted the number of 

astrocytic processes in NPCs transfected with CT miR or miR-31 after 7 d. Cells transfected 

with miR-31 exhibited significantly more, but shorter, astrocytic processes per cell than 

those with CT miR (Figs. 4I, J). Collectively, these data suggest miR-31 can promote, in 

part, astrocyte development.

MiR-31 is Required for Astrocyte Specification

Next, we tested whether miR-31 is required for astrocyte specification. Normal murine 

astrocytes (P0) were transfected with CT miR or AntagomiR-31 (A) for 7 d, and then 

analyzed by immunofluorescence and immunoblotting. The levels of GFAP were 

significantly reduced in astrocytes that lacked miR-31 (Antagomir; A) (Fig. 5A, lower panel; 

Fig. 5B); additionally, cells appeared rounded in shape and there were fewer astrocytic 

processes per cell (data not shown). Interestingly, we found the loss of miR-31 correlated 

with increased levels of KLF4, SOX2, Oct4 and Nestin (Fig. 5B). The loss of miR-31 alone 

only modestly increased Lin28 levels (Fig. 5C); this suggests that while the loss of miR-31 

may sufficiently stabilize Lin28 levels, it cannot induce de novo Lin28 expression. To assess 

how the loss of miR-31 impacts stimulus-induced (IL-1β) Lin28 expression, cells were 

transfected with CT or A for 48 hr, and then grown in the absence or presence of IL-1β; this 
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activates NF-κB and increases the levels of both Lin28 (Iliopoulos et al. 2009) and miR-31 

(Rajbhandari et al. 2015). NF-κB induced Lin28 expression was more pronounced in cells 

that lack miR-31 (A) compared to those that express miR-31 (UT) (Fig. 5C).

Next, we evaluated how the loss of miR-31 might impact the health of astrocytes; cells were 

transfected with CT miR (CT), miR-31 or AntagomiR-31 for various times (0–9 days) and 

cell metabolism was evaluated using the WST-1 assay. The metabolic profiles of astrocytes 

transfected with CT or miR-31 were nearly indistinguishable, suggesting CT and miR-31 did 

not adversely astrocytic health (Fig. 5D). Conversely, the metabolism of astrocytes lacking 

miR-31 (AntagomiR) was significantly reduced (Fig. 5D), and this coincided with loss of 

astrocytic processes and attachment as noted above (Fig. 5A, data not shown). These data 

suggest that loss of miR-31 in astrocytes may prevent astrocyte maturation and adversely 

impact the health of astrocytes.

Loss of Lin28 Expression Promotes Astrocyte Development

MiR targets mRNA to reduce gene expression; therefore, we reasoned miR-31 may target 1 

or more stem cell factors to promote astrocyte differentiation. Above, we determined the 

levels of miR-31 were inversely correlated with Lin28, Oct4, SOX2 and C-myc; of these, 

only the Lin28 mRNA contained three miR-31 elements (Fig. 6A). Immunoblots confirmed 

that the levels of Lin28 (Fig. 6B) inversely correlated with levels of miR-31 (Fig. 3F) in 

NPCs and astrocytes. To test whether the 3′ UTR of Lin28 was responsive to miR-31, the 

Lin28 3′ UTR (Lin28) or control DNA was inserted downstream of the luciferase (Luc) 

gene. Next, U251-MG astroglioma cells, which express miR-31, were transfected with 

control miR (CT) or AntagomiR-31 (Ant-31) for 48 h, and then transfected with either 

control or Lin28-Luc for an additional 24 h. In U251-MG cells, loss of miR-31 expression 

significantly enhanced Lin28-Luc activity (Fig. 6C). We also transfected U87-MG 

astroglioma cells, which lack miR-31 expression, with CT or miR-31, and then CT-Luc or 

Lin28-Luc, as described above. In U87-MG cells, miR-31 significantly reduced the levels of 

Lin28-Luc but not CT-Luc (Fig. 6D). These data indicate that the 3′ UTR of Lin28 is 

responsive to miR-31.

To test whether miR-31 targets Lin28 in order to promote astrocytogenesis, NPCs were 

transfected with CT miRNA (CT), miR-31, shRNA specific for Lin28 (shLin28), or miR-31 

+ shLin28 (31 + sh). For comparison, NPCs were grown in the presence of 10% FBS or 10% 

FBS + miR-31 + shLin28 (FBS + 31 + sh). In the presence of CT miR, NPCs grow as 

loosely adherent neurospheres (Fig. 7A, CT) that express Lin28 (Fig. 7C) and minimal 

miR-31 (Fig. 7B). After 3 d of 10% FBS, NPCs adopt the flattened morphology of 

astrocytes (Fig. 7A, FBS), and express elevated and reduced levels of miR-31 (Fig. 7B) and 

Lin28 (Fig. 7C), respectively. NPCs transfected with miR-31 alone (Fig. 7B) also exhibited 

reduced Lin28 expression (Fig. 7C), and this coincided with loss of neurosphere formation 

and growth as adherent, astrocyte-like cells (Fig. 7A, miR-31). Interestingly, loss of Lin28 

expression alone (shLin28) significantly elevated endogenous miR-31 levels (Fig. 7B, 

compare shLin28 and CT). Lin28 expression was most effectively reduced if miR-31 

expression was combined with shLin28, either in the absence and presence of FBS (Fig. 
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7C). These data suggest that miR-31 induces astrocyte development, in part, by suppressing 

Lin28 levels, and that Lin28 may negatively regulate miR-31 expression.

We hypothesized that Lin28 and miR-31 may antagonize one another’s expression in order 

to promote NPC maintenance (Lin28) or astrocyte development (miR-31). Lin28 is an RNA-

binding protein; to test if Lin28 directly bound miR-31, cells were grown in the absence or 

presence of TNF-α (TNF) to activate NF-κB(Iliopoulos et al. 2009; Pomerantz and 

Baltimore 1999), and RNA-immunoprecipitation (RIP)/qRT-PCR assays were performed. 

These studies were performed in U251-MG cells as they constitutively express miR-31; 

moreover, TNF-α induced NF-κB further elevates the levels of Lin28 expression and 

miR-31 (Iliopoulos et al. 2009; Rajbhandari et al. 2015). Equal amounts of protein were 

immunoprecipitated (IP’d) with control antibodies (IgG) or antibodies specific for Lin28 

(Lin28), and co-IP’d RNA was purified and analyzed for miR-31 using qRT-PCR. As shown 

in Fig. 7D, miR-31 associated with Lin28, but not control IgG. When bound to Lin28, miRs 

are not free to bind target mRNA; these data suggest that Lin28 may “soak-up” any residual 

miR-31 levels in order to prevent NPC to astrocyte differentiation.

Discussion

Herein, we present data demonstrating the temporal and spatial expression pattern of miR-31 

within the developing CNS. We find miR-31 is expressed in most cells of the developing 

CNS, but its levels are most profound in astrocytes. We find NPCs utilize stem cell 

transcription factors to block the miR-31 promoter in order to maintain low levels of 

miR-31; additionally, NPCs modify DNA and histones (EZH2, H3K27Me3) to inhibit 

miR-31 transcription. Should any residual miR-31 be expressed, we found that the RNA-

binding protein Lin28 bound to and inhibited miR-31 (Fig. 8). From these data, we can 

speculate that miR-31 expression and/or activity must be blocked in NPCs in order to avoid 

premature astrocytogenesis. Indeed, during astrocyte specification, STAT3 and BMP1/5/8 

become activated and bind to the miR-31 promoter; this coincides with diminished levels of 

suppressive factors and motifs, and correlates with an increase in the levels of miR-31. The 

ChIP data directly demonstrate that STAT3 and BMP1/5/8 drive miR-31 expression during 

astrocytogenesis. We demonstrate miR-31 is a key player during astrocyte specification. 

Alone, miR-31 is competent to partially induce astrocytogenesis; conversely, in the absence 

of miR-31, NPCs are unable to completely differentiate into astrocytes. From these data, we 

hypothesize that miR-31 is important for directly promoting astrocyte differentiation. In 

mature astrocytes, we determined the loss of miR-31 induced morphological and phenotypic 

changes that altered cellular phenotype and permitted markers of earlier developmental 

stages to be expressed. These data suggest miR-31 may be required to “lock” astrocytes into 

this identity. Finally, we determine miR-31 targets the stem cell factor and RNA-binding 

protein Lin28; additionally, miR-31 may promote astrocyte development, in part, by 

suppressing Lin28 expression.

Astrocytes are the most abundant cell type in the mammalian CNS (Namihira and 

Nakashima 2013). In mice, astrocyte production begins after the neurogenic-to-gliogenic 

switch, but is most prominent at P0–P14 (Nakayama et al. 2006; Setoguchi et al. 2006; 

Yanagisawa et al. 2000; Yanagisawa et al. 2001). Astrocytes provide structural support, 
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maintain water balance and ion distribution, and help establish the blood-brain barrier 

(BBB) (Namihira and Nakashima 2013). During injury or disease, astrocytes help restore 

homeostasis to the microenvironment (Gallo and Deneen 2014). Astrocytes have been 

implicated in nearly all cases of CNS injury, degeneration and disease (Gallo and Deneen 

2014). However, exactly how NPCs differentiate into astrocytes is not fully known.

Several transcription factors, including NFIA, STAT3 and SMAD1/5/8, have been 

implicated in astrocytogenesis (Glasgow et al. 2013; Glasgow et al. 2014a; Lee et al. 2014; 

Urayama et al. 2013; Yanagisawa et al. 2000). However, few studies have addressed the role 

of non-coding factors, such as miRs, and their potential contribution towards 

astrocytogenesis (Cacci et al. 2017; Jovicic and Gitler 2017; Karthikeyan et al. 2016; Li et 

al. 2016; Rao et al. 2016; Smith et al. 2010; Yun et al. 2010). By comparison, more is known 

about the contributions of miRs during neurogenesis (Boutz et al. 2007; Choi et al. 2008; 

Hobert 2006; Johnston et al. 2005; Kuss and Chen 2008; Makeyev et al. 2007; Sempere et 

al. 2004). Therefore, our study is significant as it identifies miR-31 as a potent mediator of 

astrocyte development. In our previous work, we determined that one or more alleles of 

miR-31 is deleted in GBM (Rajbhandari et al. 2015). We hypothesize that the loss of miR-31 

prevents normal astrocyte development and likely contributes to and/or worsens GBM 

tumorigencity (Rajbhandari et al. 2015). Our studies also highlight the important role cell-

specific miRs mediate during lineage specification, and underscore the need to determine 

whether these miRs are involved in disease formation/progression. Ideally, other 

investigators and future studies will help address the role(s) of miRs in astrocyte 

development and disease.
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Fig. 1. MiR-31 is Induced During Neurogenesis
A. Xenopus laevis embryos at early and mid neurula stages of development. B. miR-31 

levels from embryos (n=5) described in (A) were analyzed by qRT-PCR. (**, p < 0.001). 

Representative of two experiments. C. miR-31 expression at discrete developmental stages 

was analyzed in X. laevis embryos using ISH. The following genes were used as tissue 

specific markers: XK70 (epidermal), SOX2 (neural tube), and Snail2 (neural crest). Data are 

representative of two experiments. D. miR-31 and SOX2 or Snail2 expression at discrete 

developmental stages were evaluated in X. laevis embryos using double ISH. Data are 

representative of two experiments. E–G. RNA levels from whole murine brains at 

developmental stages indicated (E15–P70) were analyzed by qRT-PCR. (*, p < 0.05; **, p < 

0.001).
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Fig. 2. MiR-31 is Preferentially Expressed in Developing Gliogenic Regions and Astrocytes
A. MiR-31 expression was analyzed in E14.5 murine brains using ISH; adjacent sections 

were stained with DAPI. (i and ii) IF – infundibulum, AQ – Aqueduct of Sylvius, VZ – 

ventricular zone; (iii and iv) TG – Trigeminal ganglion; (v and vi) GE – Ganglionic 

Eminence, SVZ – subventricular zone. B, C. The levels of miR-31 from purified Ratticus 
novegicus and Homo sapiens samples were analyzed from indicated Gene Expression 

Omnibus (GEO) sets specified. (*, p < 0.05; **, p < 0.001). D. RNA levels from purified 

murine NPCs (E14.5) or astrocytes (P0) were analyzed by qRT-PCR. (**, p < 0.001).
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Fig. 3. MiR-31 Expression Correlates with Astrocyte Development
A–G. Murine NPCs (E14.5) were grown in the absence or presence of 10% FBS for three 

days to induce astrocyte differentiation. A. Light microscopy of NPCs grown in the absence 

(UT) or presence of 10% FBS (FBS). B. Immunofluorescence of NPCs grown as described 

in (A) using antibodies specific for SOX2 (stem cell marker; green) or GFAP (astrocyte 

marker; red). Nuclei were counterstained with DAPI. C–F. RNA from NPCs grown as 

described in (A) was analyzed by qRT-PCR. (**, p < 0.001). G. Protein levels from cells 

grown as described in (A) were analyzed by immunoblotting using the antibodies specified. 

H, I. NPCs (E14.5) were grown in the absence (UT) or presence of LIF (10 ng/ml), BMP2 

(10 ng/ml), LIF plus BMP or 10% FBS for 3 days to induce astrocyte differentiation. H. 
RNA levels from NPCs grown as described above were evaluated by qRT-PCR. (**, p < 

0.001). I. Protein levels from cells grown as described above were evaluated by 

immunoblotting using the antibodies specified. J. The miR-31 promoter spans 1,476 bp and 

contains six (1–6) evolutionarily conserved regions (ECRs) (indicated in red) upstream of 

the transcriptional start site (TSS). Below each ECR is the size in bps, percent homology 

between murine and human sequences, and putative transcription factor binding sites present 

in each area. K–Q. Normal murine NPCs (E14.5) were grown in the absence (UT) or 

presence of 10% FBS to induce astrocyte development, and ChIP assays were performed 

using the antibodies indicated. Samples were evaluated by qRT-PCR. (*, p < 0.05; **, p < 

0.001).
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Fig. 4. MiR-31 Promotes Astrocyte Development
A–E. Murine NPCs (E14.5) were transfected with control (CT) or miR-31 for 48 h. A–D. 
RNA levels were analyzed by qRT-PCR. (*, p < 0.05; **, p < 0.001). E. Protein levels from 

cells grown as described above were evaluated by immunoblotting using the antibodies 

specified. F–H. NPCs were transfected with CT or AntagomiR-31 for 48 h, and then grown 

in the absence (UT) or presence of 10% FBS for an additional 3 d to induce astrocyte 

differentiation. F, G. RNA levels were analyzed by qRT-PCR. (**, p < 0.001). H. Protein 

levels in cells grown as described above were analyzed by immunoblotting using the 

antibodies specified. I. Light microscopy of cells grown under conditions described in (A). 

J. The number and length of astrocytic processes from cells grown as described in (A) and 

shown in (I) were assesssed; 50 cells per field were counted, and experiments were repeated 

three times. (*, p < 0.05).
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Fig. 5. Astrocytes Partially De-Differentiatie Upon Loss of miR-31
A, B. Primary murine astrocytes (P0) were transfected with control (CT) or AntagomiR-31 

(AntagomiR/A) for 7 d. A. IF of cells grown as described above using antibodies specific for 

GFAP (astrocyte marker). Nuclei were counterstained with DAPI. B. Cells were grown as 

described above, and analyzed by immunoblotting using antibodies specific for stem cell 

markers (KLF4, SOX2, Oct4), NPCs (Nestin), astrocytes (GFAP) or GAPDH. C. Astrocytes 

were transfected with CT or AntagomiR-31 (A) and then grown in the absence or presence 

of IL-1β (5 ng/ml) for 7 d. IL-1β was used to activate NF-κB and induce Lin28 expression. 

Immunoblot analyses were performed using the antibodies specified. D. Murine astrocytes 

were transfected with control miR (CT), miR-31 or AntagomiR-31 and cell metabolism 

assessed at the days indicated using the WST1 assay. (**, p < 0.001).
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Fig. 6. MiR-31 Targets the Lin28 3′ UTR
A. The 3′ UTR of Lin28 contains three (1–3) putative miR-31 elements. The sequence of 

miR-31 is shown below each, with red indicating miR-31′s seed sequence. B. The level of 

Lin28 protein in murine NPCs and astrocytes was assessed by immunoblotting. C. U251-

MG cells were transfected with a luciferase expression plasmid containing a control 3′ UTR 

(Control) or the 3′ UTR of Lin28 (Lin28), and either control miR (CT) or AntagomiR-31, 

and luciferase activity was analyzed. (**, p < 0.001). D. U87-MG cells were transfected with 

luciferase expression plasmid containing a control 3′ UTR (Control) or the 3′ UTR of 

Lin28 (Lin28), and either control miR (CT) or miR-31, and luciferase activity was analyzed. 

(**, p < 0.001). Representative of three experiments.
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Fig. 7. MiR-31 and/or Loss of Lin28 Promotes Astrocyte Development
A–C. Murine NPCs (E14.5) were transfected with control (CT), miR-31 or shRNA specific 

for Lin28 (shLin28; sh) and grown in the absence or presence of 10% FBS to induce 

astrocyte development. A. Light microscopy of NPCs grown in presence of CT miR and no 

FBS (CT), CT miR and FBS (FBS), miR-31 (miR-31) or shLin28 (shLin28) molecules. B, 
C. RNA from cells grown as described above was evaluated by qRT-PCR. (*, p < 0.05; **, p 

< 0.001). D. U251-MG cells, which express both miR-31 and Lin28, were grown in the 

absence or presence of TNF (10 ng/ml) for 4 h, and antibodies for Lin28 or IgG were used to 

immunoprecipitate Lin28 from whole cell lysates. The co-immunoprecipitated RNA was 

purified and analyzed by qRT-PCR. (**, p < 0.001).
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Fig. 8. The Role of MiR-31 During Astrocyte Development
In undifferentiated NPCs (light grey box; left side), miR-31 expression and/or activity is 

suppressed by Lin28 and other stem cell factors such as Oct4, SOX2 and c-Myc, and PRC2-

mediated (EZH2) histone methylation (H3K27Me3). During astrocyte development (dark 

grey box; right side), BMP2 and LIF signaling through SMAD1/5/8 and STAT3, 

respectively, induce miR-31 expression. Once induced, miR-31 inhibits Lin28 expression, 

which coincides with reduced levels of other stem cell factors. We propose the balance 

between Lin28 and miR-31 expression helps decide the fate of NPCs undergoing astrocyte 

differentiation.
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