9 research outputs found

    Oxytocin‐loaded sustained‐release hydrogel graft provides accelerated bone formation: An experimental rat study

    No full text
    Restoration of the lost bone volume is one of the most deliberate issues in dentistry. Sustained-release microspherical oxytocin hormone in a poloxamer hydrogel scaffold combined with a mixture of beta-tricalcium phosphate and hydroxyapatite (CP) may serve as a suitable bone graft. The aim of this study was to design and test a novel thermosensitive hydrogel graft incorporating oxytocin-loaded poly(d, l-lactide-co-glycolide) (PLGA) sustained-release microspheres and CP. Thermosensitive poloxamer hydrogel containing CP (HCP graft) was prepared as a base and combined with hollow microspheres (HCPM) and oxytocin-loaded microspheres (HCPOM). Eighty Wistar rats were used for testing the grafts and a control group in 8-mm-diameter critical-sized calvarial defects (CSD); (n = 20). Bone healing at the 4th and 8th weeks was evaluated by histological, histomorphometric, and radiological (micro-computed tomography [mu CT]) analyses. The results were analyzed by two-way analysis of variance (P .05). mu CT findings of HCPOM group showed the highest mean bone mineral density values (42.21 +/- 5.14 and 46.94 +/- 3.30 g/cm(3) for the 4th and 8th weeks, respectively; P < .0027). The proposed oxytocin-loaded sustained-release PLGA microspheres containing thermosensitive hydrogel graft (HCPOM) provide an accelerated bone regeneration in the rat calvaria

    Dihydrosphingosine driven enrichment of sphingolipids attenuates TGFβ induced collagen synthesis in cardiac fibroblasts

    Get PDF
    The sphingolipid de novo synthesis pathway, encompassing the sphingolipids, the enzymes and the cell membrane receptors, are being investigated for their role in diseases and as potential therapeutic targets. The intermediate sphingolipids such as dihydrosphingosine (dhSph) and sphingosine (Sph) have not been investigated due to them being thought of as precursors to other more active lipids such as ceramide (Cer) and sphingosine 1 phosphate (S1P). Here we investigated their effects in terms of collagen synthesis in primary rat neonatal cardiac fibroblasts (NCFs). Our results in NCFs showed that both dhSph and Sph did not induce collagen synthesis, whilst dhSph reduced collagen synthesis induced by transforming growth factor β (TGFβ). The mechanisms of these inhibitory effects were associated with the increased activation of the de novo synthesis pathway that led to increased dihydrosphingosine 1 phosphate (dhS1P). Subsequently, through a negative feedback mechanism that may involve substrate-enzyme receptor interactions, S1P receptor 1 expression (S1PR1) was reduced

    Acute toxicity of nickel nanoparticles in rats after intravenous injection

    No full text
    Ruth R Magaye,1,* Xia Yue,1,* Baobo Zou,1 Hongbo Shi,1 Hongsheng Yu,2 Kui Liu,1 Xialu Lin,1 Jin Xu,1 Cui Yang,3 Aiguo Wu,3 Jinshun Zhao1 1Public Health Department, 2Affiliated Hospital of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, 3Key Laboratory of Magnetic Materials and Devices, Division of Functional Materials and Nano-devices, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, People&#39;s Republic of China *These authors contributed equally to this work Abstract: This study was carried out to add scientific data in regard to the use of metallic nanoparticles in nanomedicine. The acute toxicity of nickel (Ni) nanoparticles (50 nm), intravenously injected through the dorsal penile vein of Sprague Dawley rats was evaluated in this study. Fourteen days after injection, Ni nanoparticles induced liver and spleen injury, lung inflammation, and caused cardiac toxicity. These results indicate that precautionary measures should be taken with regard to the use of Ni nanoparticles or Ni compounds in nanomedicine. Keywords: nickel, nanoparticles, intravenous, acute toxicit

    Biomarkers of nanomaterial exposure and effect: current status

    No full text
    Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from \u201comic\u201d technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In this context, the application of the most recent advances in analytical chemistry and biochemistry to the biological monitoring of nanomaterial exposure may be also useful to detect and define patterns and mechanisms of early nanospecific biochemical alterations
    corecore