2,445 research outputs found

    Pseudogap and the specific heat of high TcT_c superconductors

    Full text link
    The specific heat of a two dimensional repulsive Hubbard model with local interaction is investigated. We use the two-pole approximation which exhibits explicitly important correlations that are sources of the pseudogap anomaly. The interplay between the specific heat and the pseudogap is the main focus of the present work. Our self consistent numerical results show that above the occupation nT≈0.85n_T\approx 0.85, the specific heat starts to decrease due to the presence of a pseudogap in the density of states. We have also observed a two peak structure in the specific heat. Such structure is robust with respect to the Coulomb interaction UU but it is significantly affected by the occupation nTn_T. A detailed study of the two peak structure is carried out in terms of the renormalized quasi-particle bands. The role of the second nearest neighbor hopping on the specific heat behavior and on the pseudogap, is extensively discussed.Comment: 6 pages, 6 figures, accepted for publication in Solid State Communication

    A van Hemmen-Kondo model for disordered strongly correlated electron systems

    Full text link
    We present here a theoretical model in order to describe the competition between the Kondo effect and the spin glass behavior. The spin glass part of the starting Hamiltonian contains Ising spins with an intersite exchange interaction given by the local van Hemmen model, while the Kondo effect is described as usual by the intrasite exchange JKJ_K. We obtain, for large JKJ_K values, a Kondo phase and, for smaller JKJ_K values, a succession, with decreasingComment: 14 pages, 4 figures, accepted for publication in Phys. Rev.

    Specific heat of a non-local attractive Hubbard model

    Full text link
    The specific heat of an attractive (interaction G<0G<0) non-local Hubbard model is investigated. We use a two-pole approximation which leads to a set of correlation functions. In particular, the correlation function $\ playsanimportantroleasasourceofanomaliesinthenormalstateofthemodel.Ourresultsshowthatforagivingrangeof plays an important role as a source of anomalies in the normal state of the model. Our results show that for a giving range of Gand and \deltawhere where \delta=1-n_T( (n_T=n_{\uparrow}+n_{\downarrow}),thespecificheatasafunctionofthetemperaturepresentsatwopeakstructure.Nevertehelesss,thepresenceofapseudogapontheanti−nodalpoints), the specific heat as a function of the temperature presents a two peak structure. Nevertehelesss, the presence of a pseudogap on the anti-nodal points (0,\pm\pi)and and (\pm\pi,0)$ eliminates the two peak structure, the low temperature peak remaining. The effects of the second nearest neighbor hopping on the specific heat are also investigated.Comment: 5 pages, 7 figure

    Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field

    Full text link
    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ\Gamma. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0J_0 and standard deviation JJ. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small gg (gg is the strength of the local superconductor coupling written in units of JJ), while the PAIR phase appears as unique solution for large gg. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ\Gamma.Comment: 16 pages, 6 figures, accepted Eur. Phys. J.

    Emergence of turbulence in an oscillating Bose-Einstein condensate

    Full text link
    We report on the experimental observation of vortices tangle in an atomic BEC of Rb-87 atoms when an external oscillatory perturbation is introduced in the trap. The vortices tangle configuration is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion. Instead, the cloud expands keeping the ratio between their axis constant. Turbulence in atomic superfluids may constitute an alternative system to investigate decay mechanisms as well as to test fundamental theoretical aspects in this field.Comment: accepted for Phys. Rev. Let

    One-step replica symmetry breaking solution for a highly asymmetric two-sublattice fermionic Ising spin glass model in a transverse field

    Full text link
    The one-step replica symmetry breaking (RSB) is used to study a two-sublattice fermionic infinite-range Ising spin glass (SG) model in a transverse field Γ\Gamma. The problem is formulated in a Grassmann path integral formalism within the static approximation. In this model, a parallel magnetic field HH breaks the symmetry of the sublattices. It destroys the antiferromagnetic (AF) order, but it can favor the nonergodic mixed phase (SG+AF) characterizing an asymmetric RSB region. In this region, intra-sublattice disordered interactions VV increase the difference between the RSB solutions of each sublattice. The freezing temperature shows a higher increase with HH when VV enhances. A discontinue phase transition from the replica symmetry (RS) solution to the RSB solution can appear with the presence of an intra-sublattice ferromagnetic average coupling. The Γ\Gamma field introduces a quantum spin flip mechanism that suppresses the magnetic orders leading them to quantum critical points. Results suggest that the quantum effects are not able to restore the RS solution. However, in the asymmetric RSB region, Γ\Gamma can produce a stable RS solution at any finite temperature for a particular sublattice while the other sublattice still presents RSB solution for the special case in which only the intra-sublattice spins couple with disordered interactions.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
    • …
    corecore