194 research outputs found

    Monitoring the Cure State of Thermosetting Resins by Ultrasound

    Get PDF
    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processin

    finite element modeling of multiscale diffusion in intercalated nanocomposites

    Get PDF
    This work is aimed to study the diffusion in 3D nanocomposites obtained with stacks of lamellar nanofillers characterized by the presence of permeable galleries, by finite element (FE) analysis. To this purpose, a geometric model, based on a random distribution of noninterpenetrating stacks, with each one being made of regularly spaced lamellae, was developed. The developed model is able to account for diffusion between stacks (interstack diffusion) as well as diffusion inside stacks (intrastack diffusion). Simulation results showed that intrastack diffusion, related to flow inside galleries, can be quite relevant, particularly at high values of gallery thickness. Comparison of the simulation results with literature models shows that when intrastack diffusion is not taken into account, the diffusion behavior in intercalated nanocomposites is not well predicted. Therefore, intrastack permeability of nanofillers such as organic modified clays cannot be neglected. Such intrastack diffusivity is shown to depend on the morphological features of the nanofiller requiring the development of a proper mathematical model

    Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives

    Get PDF
    This work is aimed to study the suitability of cardanol and its derivatives as plasticizers for poly(lactic acid), PLA. Differential scanning calorimetry (DSC) was used to assess the plasticizing effectiveness of cardanol (CARD) and its derivatives, cardanol acetate and epoxidated cardanol acetate, comparing the results with those obtained with a commercially available plasticizer, poly (ethylene glycol), PEG, with an average molecular weight of 400 g mol-1. Measurement of the glass transition temperature highlighted that, among the tested cardanol derivatives, neat cardanol is the most effective plasticizer for PLA. In fact, the glass transition temperature of PLA plasticized by CARD is only slightly higher than that of PLA plasticized by PEG. This is attributed to the lower compatibility between PLA and CARD compared to PLA and PEG, as estimated by the interaction radius. Therefore, cardanol could represent a technically valid, economic, and largely available plasticizer for PLA. Moreover, DSC, an X-ray diffraction analysis, showed that, compared to PEG, the addition of CARD involves a limited increase of the rate of crystallization, even in this case, due to its lower compatibility with PLA. Dynamic mechanical analysis showed that, below glass transition, PEG is able to reduce the stiffness of PLA by a higher extent. However, as the temperature increases, retention of the shear modulus of PEGplasticized PLA is much higher than that of CARD-plasticized PLA. As a consequence, above glass transition, the stiffness of CARD-plasticized PLA becomes lower than that of PEG-plasticized PLA. Therefore, despite its lower compatibility with PLA, CARD can impart to plasticized PLA lower modulus compared to PEG, when the plasticizer content is high enough to reduce the glass transition below room temperature

    Processing of Super Tough Plasticized PLA by Rotational Molding

    Get PDF
    This work is aimed at studying the suitability of polylactic acid (PLA) plasticized by two cardanol derivatives, i.e., cardanol and epoxidized cardanol acetate, in rotational molding, for the production of hollow items. For this purpose, plasticized PLA samples were obtained by melt mixing and then processed by a lab-scale rotational molding equipment. For comparison, poly(ethylene glycole), PEG, and plasticized PLA samples were also produced. Despite the very low cooling rates attained in rotational molding, completely amorphous samples were obtained with neat PLA and PLA plasticized by cardanol derivatives. In contrast, PEG plasticized PLA showed a very high degree of crystallinity, as highlighted by DSC and XRD analysis, which made the extraction of the rotomolded box-shaped specimens impossible. The plasticizing effectiveness of cardanol derivatives was proven by tensile testing of rotational molded prototypes, which highlighted the reduced modulus and strength and improved strain to break, compared to neat PLA. Therefore, efficient toughening of PLA can be attained by the use of the two cardanol derived plasticizers, which involves a significant reduction of the polymer glass transition, as well as a reduced increase of the crystallization kinetic. On the other hand, the reduction of the glass transition temperature due to the addition of plasticizer is responsible for significant crystallization effects even during ageing at room temperature, which involves significant embrittlement of the material

    Finite Element Modeling of Multiscale Diffusion in Intercalated Nanocomposites

    Get PDF
    This work is aimed to study the diffusion in 3D nanocomposites obtained with stacks of lamellar nanofillers characterized by the presence of permeable galleries, by finite element (FE) analysis. To this purpose, a geometric model, based on a random distribution of noninterpenetrating stacks, with each one being made of regularly spaced lamellae, was developed. The developed model is able to account for diffusion between stacks (interstack diffusion) as well as diffusion inside stacks (intrastack diffusion). Simulation results showed that intrastack diffusion, related to flow inside galleries, can be quite relevant, particularly at high values of gallery thickness. Comparison of the simulation results with literature models shows that when intrastack diffusion is not taken into account, the diffusion behavior in intercalated nanocomposites is not well predicted. Therefore, intrastack permeability of nanofillers such as organic modified clays cannot be neglected. Such intrastack diffusivity is shown to depend on the morphological features of the nanofiller requiring the development of a proper mathematical model

    Stress relaxation in asymmetric bistable composites: Experiments and simulations

    Get PDF
    In the last years, bistable composite structures are finding interest in several aeronautical applications such as power harvesting devices or morphing applications on very small aircraft/drones, not needing servo-activated control systems. Residual stresses, developed upon cooling after curing, leads to warped the composite laminates. Several batches of unsymmetrical and unbalanced [0/90] laminates were cured in an autoclave according to a standard temperature cycle, following the pre-preg supplier suggested curing cycle. In order to increase the thermal stresses (and hence the bistability phenomenon), these laminates were removed from the autoclave immediately after the curing reaction and rapidly cooled down at room temperature not applying the indicated cool rate between 2 and 5 °C min-1. During storage at room temperature, thermal stresses changed over time, indicating that asymptotic stress relaxation occurs. The first part of this work looks at residual stress characterization of bistable composite plates measuring the changes of shape observed during room temperature annealing. Rectangular plates were produced and the bistable geometric shapes were accurately assessed using a laser scanner system over several days, in order to monitor the curvature changes due to stress relaxation. Then phenomenological viscoelastic predicting models were proposed for a quick estimate for the strain/stress relaxation phenomenon. The loss of bistability was demonstrated with the help of numerical simulation and experimental testing. The final goal was to gain a better knowledge of the relation between processing and final shape of bistable laminates, in order to make them suitable for application on small air vehicles

    Spring-in angle as molding distortion for thermoplastic matrix composite

    Get PDF
    In this work, the spring-in angle behavior of a U-channel shaped thermoplastic matrix laminate is studied. The consolidation of the U-channel shaped profile having two different corner radii took place in an autoclave. Spring-in angle was measured at room temperature, after cooling in the autoclave, and during subsequent heating at different temperatures and after final cooling to room temperature. Different thermally induced spring-in angle behaviors were observed for the two inner radii of U-specimen. Thermal expansion coefficients in the through the thickness and in-plane directions were measured. Experimental spring-in angle data were then compared with a differential model derived from the Radford model. Some differences between the model results and experimental spring-in data were observed. The differences observed between the two radii and between experimental and model results were attributed to the existence of fibers distortion at the corner, leading to significant fibers misalignment and wrinkling. Consequently, the Radford model was modified to account for the increase of thermal expansion coefficient in the through the thickness direction. Results showed a better agreement with experimental data. Finally, the difference observed in the spring-in angle before and after heating of the composite indicates the relevance of non-thermoelastic effects in thermoplastic matrix composites

    An overview of progress and current challenges in ultrasonic treatment of polymer melts

    Get PDF
    An overview of the current state of art of the ultrasonic treatment technology applied to polymer melts is presented. The research and technological advancements of the ultrasonic treatment as applied to development of polymeric materials are discussed. An analysis of the technological progress shows that the mechanism of the effects of ultrasound on polymer melts is not fully understood at present. Such lack in fully understanding the mechanism could limit the use of this versatile technology in future applications. Based on the critical analysis of the research progress to date, some key issues for a deeper understanding of the chemical and physical effects of ultrasound on polymer melts are identified

    Autofluorescence of Model Polyethylene Terephthalate Nanoplastics for Cell Interaction Studies

    Get PDF
    This work contributes to fill one of the gaps regarding nanoplastic interactions with biological systems by producing polyethylene terephthalate (PET) model nanoplastics, similar to those found in the marine environment, by means of a fast top-down approach based on mechanical fragmentation. Their size distribution and morphology were characterized by laser diffraction and atomic force microscopy (AFM). Their autofluorescence was studied by spectrofluorimetry and fluorescence imaging, being a key property for the evaluation of their interaction with biota. The emission spectra of label-free nanoplastics were comparable with those of PET nanoplastics labeled with Nile red. Finally, the suitability of label-free nanoplastics for biological studies was assessed by in vitro exposure with Mytilus galloprovincialis hemolymphatic cells in a time interval up to 6 h. The nanoplastic internalization into these cells, known to be provided with phagocytic activity, was assessed by fluorescence microscopy. The obtained results underlined that the autofluorescence of the model PET nanoplastics produced in the laboratory was adequate for biological studies having the potential to overcome the disadvantages commonly associated with several fluorescent dyes, such as the tendency to also stain other organic materials different from plastics, to form aggregates due to intermolecular interactions at high concentrations with a consequent decrease in fluorescence intensity, and to dye desorption from nanoparticles. The results of the autofluorescence study provide an innovative approach for plastic risk assessment
    corecore