287 research outputs found

    Electromagnetic gyrokinetic turbulence in finite-beta helical plasmas

    Get PDF
    A saturation mechanism for microturbulence in a regime of weak zonal flow generation isinvestigated by means of electromagnetic gyrokinetic simulations. The study identifies a newsaturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma.Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line

    Antigen and Thapsigargin Promote Influx of Ca2+ in Rat Basophilic RBL-2H3 Cells by Ostensibly Similar Mechanisms That Allow Filling of Inositol 1,4,5-Trisphosphate-Sensitive and Mitochondrial Ca2+ Stores

    Get PDF
    In single, Fura 2-loaded RBL-2H3 cells, antigen and thapsigargin depleted the same intracellular pool of Ca2+ in the absence of external Ca2+; provision of external Ca2+ induced immediate increases in levels of free Ca2+ ([Ca2+](i)). These increases were dependent on the presence of external Ca2+ and, presumably, on influx of Ca2+ across the cell membrane. Both stimulants enhanced intracellular accumulation of 45Ca2+ through ostensibly similar mechanisms because accumulation was blocked to similar extents by various multivalent cations or by depolarization with K+. Because thapsigargin blocked reuptake of Ca2+ into inositol 1,4,5-trisphosphate sensitive stores, uptake occurred independently of the refilling of these stores. Uptake was dependent instead on sequestration of 45Ca2+ in a pool of high capacity that was insensitive to thapsigargin, caffeine, GTP and inositol 1,4,5-trisphosphate but sensitive to ionomycin and mitochondrial inhibitors. The existence of an inositol 1,4,5-trisphosphate-insensitive pool was also apparent in permeabilized cells; at 0.1 μM [Ca2+](i), uptake of 45Ca2+ was largely confined (\u3e 80%) to the inositol 1,4,5-trisphosphate-sensitive pool, but at 2 μM [Ca2+](i) uptake was largely (\u3e 60%) into the inositol 1,4,5-trisphosphate-insensitive pool. Provision of mitochondrial inhibitors along with thapsigargin to block uptake into both pools, did not impair the thapsigargin-induced increase in [Ca2+](i) or influx of Ca2+, as indicated by changes in Fura 2 fluorescence, but did block the intracellular accumulation of 45Ca2+. The studies illustrate the utility of simultaneous measurements of [Ca2+](i) and 45Ca2+ uptake for a full accounting of Ca2+ homoeostasis as exemplified by the ability to distinguish between influx and mitochondrial uptake of Ca2+

    Plasma beta dependence of turbulent transport suggesting an advantage of weak magnetic shear from local and global gyrokinetic simulations

    Get PDF
    A higher plasma β is desirable for realizing high performance fusion reactor, in fact, one of the three goals of JT-60SA project is to achieve a high-β regime. We investigate key physical processes that regulate the β dependence of turbulent transport in L-mode plasmas by means of both local and global gyrokinetic simulations. From local simulations, we found that the turbulent transport does not decrease as β increases, because the electromagnetic stabilizing effect is canceled out by the increase of the Shafranov shift. This influence of the Shafranov shift is suppressed when the magnetic shear is weak, and thus the electromagnetic stabilization is prominent in weak shear plasmas, suggesting an advantage of weak magnetic shear plasmas for achieving a high-β regime. In high β regime, local gyrokinetic simulations are suffered from the non-saturation of turbulence level. In global simulations, by contrast, the electromagnetic turbulence gets saturated by the entropy advection in the radial direction to avoid the zonal flow erosion due to magnetic fluctuations. This breakthrough enables us to explore turbulent transport at a higher β regime by gyrokinetic simulations

    Effects of Flavonoids Isolated From Orange Jasmine (Murraya Paniculata [L.] Jack.) on Histamine Release From Mast Cells

    Full text link
    Murraya paniculata [L.] Jack. (Kemuning) is a plant that grows widely in some areas of Indonesia. Studies related to this plant have been widely explored especially isolation of its active compounds. The plant contents several active compounds such as flanovoids. In the study, three flavonoid isolated from M. paniculata were evaluated for their effect on histamine release from mast cells (RBL-2H3 cells). These compounds were 3,3',4',5,5',6,7,8-octamethoxyflavone; 3,3',4',5,5',6,7-heptamethoxyflavone and 3, 3', 4', 5, 5', 7–hexamethoxyflavone. The histamine inducers used in the study were DNP24-BSA dan thapsigargin, inducing the histamine release immunologically and non-immunologically, respectively. In the study, heptamethoxyflavone and hexamethoxyflavone did not influence the histamine release from mast cells significantly. However, octamethoxyflavone could increase the histamine release from RBL-2H3 cells in absence and presence the histamine inducers. The flavanoid could increase the release of histamine up to 50 %. Based on the results, polymethoxy moieties at the structure of flavonoid have a significant role to emerge the histamine-release stimulating effect from mast cells

    Had the planet mars not existed: Kepler's equant model and its physical consequences

    Full text link
    We examine the equant model for the motion of planets, which has been the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal acceleration with an inverse square dependence on the distance to the sun. If this dependence is assumed to be universal, Kepler's third law follows immediately. This elementary execice in kinematics for undergraduates emphasizes the proximity of the equant model coming from Ancient Greece with our present knowledge. It adds to its historical interest a didactical relevance concerning, in particular, the discussion of the Aristotelian or Newtonian conception of motion
    corecore