331 research outputs found

    Eating Out in the British Isles

    Get PDF
    This paper presents a comparative analysis of the foodservice industries in both Ireland and the UK. Each industry is analysed separately using the most recently available Household Budget Survey datasets for Ireland and the most recent Expenditure and Food Datasets for the UK and is disaggregated into quick-service (fast food and takeaway) and full-service (hotel and restaurant meals), the two largest components of each industry. A double hurdle model, adjusted for misspecification, is used in this analysis. A number of variables affect both dependent variables in the same way, for example, income and age and the number of workers variable, but differences are apparent throughout the discussion. Perhaps the most interesting point to highlight is how similar the Irish and UK results for both quick-service and full-service expenditure have been despite the UK industry being at a more mature stage of growth. Health awareness significantly reduces the likelihood of participation and reduces the amount of expenditure on quick-service but no similar effect is observed for full-service in either Ireland or the UK, which in itself is significant as the UK industry is more developed than its Irish equivalent.Food-Away-From-Home, Quick-service, Full-service, Double Hurdle Model, Box-Cox Transformation., Food Consumption/Nutrition/Food Safety, D12, D13, C34, R2.,

    A double-hurdle model of Irish households' foodservice expenditure patterns

    Get PDF
    The aim of this paper is to analyse the various factors fuelling demand for Food- Away - From- Home (FAFH) in Ireland. The two largest components of this industry, the quick- service sector (fast food and takeaway) and the full- service sector (hotel and restaurant meals), are analysed using the most recently available Household Budget Survey data for Ireland. The results from a Box- Cox double hurdle model indicate that different variables affect expenditure in the different sectors in different ways. Income has a greater effect on full- service expenditure than on quick- service. Similarly households that are healthconscious indicate a greater preference for full- service meals while households with higher time values indicate a greater preference for quick- service. Households of a higher social class and those with higher education levels also appear to favour full- service expenditure. In addition, younger, urbanised households favour quick- service meal options. The results emphasise the merits of adopting a disaggregated approach to analysing foodservice expenditure patterns.Foodservice, Food- Away- From- Home, Quick- service, Fullservice, Food Consumption/Nutrition/Food Safety, D12, D13, C34, R2,

    Peripheral blood gene expression profile of infants with atopic dermatitis

    Get PDF
    To enhance the understanding of molecular mechanisms and mine previously unidentified biomarkers of pediatric atopic dermatitis, PBMC gene expression profiles were generated by RNA sequencing in infants with atopic dermatitis and age-matched controls. A total of 178 significantly differentially expressed genes (DEGs) (115 upregulations and 63 downregulations) were seen, compared with those in healthy controls. The DEGs identified included IL1β, TNF, TREM1, IL18R1, and IL18RAP. DEGs were validated by real-time RT- qPCR in a larger number of samples from PBMCs of infants with atopic dermatitis aged <12 months. Using the DAVID (Database for Annotation, Visualization and Integrated Discovery) database, functional and pathway enrichment analyses of DEGs were performed. Gene ontology enrichment analysis showed that DEGs were associated with immune responses, inflammatory responses, regulation of immune responses, and platelet activation. Pathway analysis indicated that DEGs were enriched in cytokine‒cytokine receptor interaction, immunoregulatory interactions between lymphoid and nonlymphoid cells, hematopoietic cell lineage, phosphoinositide 3-kinase‒protein kinase B signaling pathway, NK cell‒mediated cytotoxicity, and platelet activation. Furthermore, the protein‒protein interaction network was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database and visualized with Cytoscape software. Finally, on the basis of the protein‒protein interaction network, 18 hub genes were selected, and two significant modules were obtained. In conclusion, this study sheds light on the molecular mechanisms of pediatric atopic dermatitis and may provide diagnostic biomarkers and therapeutic targets

    A circuit logic for sexually shared and dimorphic aggressive behaviors in Drosophila

    Get PDF
    Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We have identified three cell types that regulate aggression in Drosophila: one type is sexually shared, and the other two are sex specific. Shared common aggression-promoting (CAP) neurons mediate aggressive approach in both sexes, whereas functionally downstream dimorphic but homologous cell types, called male-specific aggression-promoting (MAP) neurons in males and fpC1 in females, control dimorphic attack. These symmetric circuits underlie the divergence of male and female aggressive behaviors, from their monomorphic appetitive/motivational to their dimorphic consummatory phases. The strength of the monomorphic → dimorphic functional connection is increased by social isolation in both sexes, suggesting that it may be a locus for isolation-dependent enhancement of aggression. Together, these findings reveal a circuit logic for the neural control of behaviors that include both sexually monomorphic and dimorphic actions, which may generalize to other organisms

    Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network

    Get PDF
    peer-reviewedChlorhexidine is one of the most widely used biocides in health and agricultural settings as well as in the modern food industry. It is a cationic biocide of the biguanide class. Details of its mechanism of action are largely unknown. The frequent use of chlorhexidine has been questioned recently, amidst concerns that an overuse of this compound may select for bacteria displaying an altered susceptibility to antimicrobials, including clinically important anti-bacterial agents. We generated a Salmonella enterica serovar Typhimurium isolate (ST24CHX) that exhibited a high-level tolerant phenotype to chlorhexidine, following several rounds of in vitro selection, using sub-lethal concentrations of the biocide. This mutant showed altered suceptibility to a panel of clinically important antimicrobial compounds. Here we describe a genomic, transcriptomic, proteomic, and phenotypic analysis of the chlorhexidine tolerant S. Typhimurium compared with its isogenic sensitive progenitor. Results from this study describe a chlorhexidine defense network that functions in both the reference chlorhexidine sensitive isolate and the tolerant mutant. The defense network involved multiple cell targets including those associated with the synthesis and modification of the cell wall, the SOS response, virulence, and a shift in cellular metabolism toward anoxic pathways, some of which were regulated by CreB and Fur. In addition, results indicated that chlorhexidine tolerance was associated with more extensive modifications of the same cellular processes involved in this proposed network, as well as a divergent defense response involving the up-regulation of additional targets such as the flagellar apparatus and an altered cellular phosphate metabolism. These data show that sub-lethal concentrations of chlorhexidine induce distinct changes in exposed Salmonella, and our findings provide insights into the mechanisms of action and tolerance to this biocidal agent.Department of Agriculture, Food and the Marin

    Laminin enhances the growth of human neural stem cells in defined culture media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. <it>In vivo</it>, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth.</p> <p>Results</p> <p>To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner.</p> <p>Conclusion</p> <p>The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.</p

    A TDDFT investigation of the Photosystem II reaction center : Insights into the precursors to charge separation

    Get PDF
    Authors acknowledge the EPSRC for funding this research.Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments’ porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over ChlD1 and PheD1 as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton–charge transfer states (ChlD1+PheD1−)* and (PD2+PD1−)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.Publisher PDFPeer reviewe

    Changes in nano-mechanical properties of human epidermal cornified cells in children with atopic dermatitis

    Get PDF
    Background: Impaired skin barrier is an important etiological factor in atopic dermatitis (AD). The structural protein filaggrin (FLG) plays a major role in maintenance of the competent skin barrier and its deficiency is associated with enhanced susceptibility to mechanical injury. Here we examined biomechanical characteristics of the corneocytes in children with AD and healthy controls. Methods: We recruited 20 children with AD and 7 healthy children. They were genotyped for filaggrin gene ( FLG) loss-of-function mutations. Stratum corneum was collected from clinically unaffected skin by adhesive tapes. Cell stiffness (apparent elastic modulus, Ea) was determined by atomic force microscopy and filaggrin degradation products (NMF) by liquid chromatography. Skin barrier function was assessed through trans-epidermal water loss (TEWL) and disease severity by the SCORing Atopic Dermatitis (SCORAD) tool. Results: Corneocytes collected from AD patients showed a decreased elastic modulus which was strongly correlated with NMF and TEWL, but not with SCORAD. As compared with healthy controls, AD patients had reduced TEWL and NMF levels regardless of FLG mutations. NMF was strongly correlated with TEWL. Conclusion: Our findings demonstrate that AD patients have decreased corneocyte stiffness which correlates with reduced levels of filaggrin degradation products, NMF and skin barrier function. Altered mechanical properties of the corneocytes likely contribute to the loss of mechanical integrity of the SC and to reduced skin barrier function in AD
    corecore