144 research outputs found
Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment
Peer reviewedPublisher PD
Disease Gene Characterization through Large-Scale Co-Expression Analysis
In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET).Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2) and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders.UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis
Investigation of autism and GABA receptor subunit genes in multiple ethnic groups
Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SNPs) within a GABA receptor subunit gene on chromosome 4, GABRA4, and interaction between SNPs in GABRA4 and GABRB1 (also on chromosome 4), within Caucasian autism patients. Studies of genetic variation in African-American autism families are rare. Analysis of 557 Caucasian and an independent population of 54 African-American families with 35 SNPs within GABRB1 and GABRA4 strengthened the evidence for involvement of GABRA4 in autism risk in Caucasians (rs17599165, p=0.0015; rs1912960, p=0.0073; and rs17599416, p=0.0040) and gave evidence of significant association in African-Americans (rs2280073, p=0.0287 and rs16859788, p=0.0253). The GABRA4 and GABRB1 interaction was also confirmed in the Caucasian dataset (most significant pair, rs1912960 and rs2351299; p=0.004). Analysis of the subset of families with a positive history of seizure activity in at least one autism patient revealed no association to GABRA4; however, three SNPs within GABRB1 showed significant allelic association; rs2351299 (p=0.0163), rs4482737 (p=0.0339), and rs3832300 (p=0.0253). These results confirmed our earlier findings, indicating GABRA4 and GABRB1 as genes contributing to autism susceptibility, extending the effect to multiple ethnic groups and suggesting seizures as a stratifying phenotype
Special Libraries, April 1933
Volume 24, Issue 3https://scholarworks.sjsu.edu/sla_sl_1933/1002/thumbnail.jp
Usefulness of bronchoalveolar lavage in suspect COVID-19 repeatedly negative swab test and interstitial lung disease
The diagnosis of coronavirus disease 2019 (COVID-19) relies on nasopharyngeal swab, which shows a 20–30% risk of false negativity [1]. Bronchoalveolar lavage (BAL) is reported to be useful in patients with pulmonary interstitial infiltrates on high-resolution computed tomography (HRCT). We investigated the usefulness of BAL in symptomatic patients with positive HRCT and a repeatedly negative swab test (‘grey zone’)
Cluster Headache Genomewide Association Study and Meta-Analysis Identifies Eight Loci and Implicates Smoking as Causal Risk Factor
Objective: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. Methods: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. Results: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. Interpretation: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023
Stem cells in ectodermal development
Tissue-specific stem cells sustain organs for a lifetime through self-renewal and generating differentiated progeny. Although tissue stem cells are established during organogenesis, the precise origin of most adult stem cells in the developing embryo is unclear. Mammalian skin is one of the best-studied epithelial systems containing stem cells to date, however the origin of most of the stem cell populations found in the adult epidermis is unknown. Here, we try to recapitulate the emergence and genesis of an ectodermal stem cell during development until the formation of an adult skin. We ask whether skin stem cells share key transcriptional regulators with their embryonic counterparts and discuss whether embryonic-like stem cells may persist through to adulthood in vivo
Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning
Background Measurement of cardiac structure and function from images (e.g. volumes, mass and derived parameters such as left ventricular (LV) ejection fraction [LVEF]) guides care for millions. This is best assessed using cardiovascular magnetic resonance (CMR), but image analysis is currently performed by individual clinicians, which introduces error. We sought to develop a machine learning algorithm for volumetric analysis of CMR images with demonstrably better precision than human analysis. Methods A fully automated machine learning algorithm was trained on 1923 scans (10 scanner models, 13 institutions, 9 clinical conditions, 60,000 contours) and used to segment the LV blood volume and myocardium. Performance was quantified by measuring precision on an independent multi-site validation dataset with multiple pathologies with n = 109 patients, scanned twice. This dataset was augmented with a further 1277 patients scanned as part of routine clinical care to allow qualitative assessment of generalization ability by identifying mis-segmentations. Machine learning algorithm (‘machine’) performance was compared to three clinicians (‘human’) and a commercial tool (cvi42, Circle Cardiovascular Imaging). Findings Machine analysis was quicker (20 s per patient) than human (13 min). Overall machine mis-segmentation rate was 1 in 479 images for the combined dataset, occurring mostly in rare pathologies not encountered in training. Without correcting these mis-segmentations, machine analysis had superior precision to three clinicians (e.g. scan-rescan coefficients of variation of human vs machine: LVEF 6.0% vs 4.2%, LV mass 4.8% vs. 3.6%; both P < 0.05), translating to a 46% reduction in required trial sample size using an LVEF endpoint. Conclusion We present a fully automated algorithm for measuring LV structure and global systolic function that betters human performance for speed and precision
Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases
BACKGROUND: Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. RESULTS: We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. CONCLUSION: We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate
- …