329 research outputs found

    « L’Océan glacial » : poème-objet ou affiche surréaliste ?

    Get PDF
     Cette étude a pour objet de renouveler, grâce à de nouvelles données, l’analyse de « L’Océan glacial » (1936), « poème-objet » habituellement attribué à André Breton. Selon notre hypothèse, cette oeuvre pourrait être une photographie préparée par Man Ray plutôt qu’un poème-objet élaboré par Breton, car on ne peut pas y constater l’« exaltation réciproque » des mots et des objets usuels qui caractérise les poèmes-objets. Par ailleurs, nous avons découvert pour la première fois que le paquet de cigarettes utilisé dans cette oeuvre était un paquet de Celtiques, marque française créée en 1933. En s’appuyant sur cette nouvelle information, nous allons montrer que le véritable intérêt de « L’Océan glacial » consiste en un renversement de signe : aux cigarettes Celtique traditionnellement considérées comme « viriles » est appliquée une image féminine ; le paquet de l’affiche publicitaire réalisée par Cassandre en 1934 est également retourné dans l’autre sens. Enfin, le miroir reflétant le paquet-objet incarne lui aussi le thème du renversement ; la mise en scène délibérée de ce miroir est peut-être l’indice que l’ensemble de la composition est calculé par un photographe plutôt qu’un poète

    Sex difference and immunosenescence affect transplantation outcomes

    Get PDF
    Kidney transplantation is a well-established alternative to renal replacement therapy. Although the number of patients with end-stage renal disease (ESRD) is increasing, the availability of kidney for transplantation is still insufficient to meet the needs. As age increases, the prevalence of ESRD increases; thus, the population of aged donors and recipients occupies large proportion. Accumulated senescent cells secrete pro-inflammatory factors and induce senescence. Additionally, it is gradually becoming clear that biological sex differences can influence aging and cause differences in senescence. Here, we review whether age-related sex differences affect organ transplant outcomes and what should be done in the future

    Structure of Gold - Silver Nanoparticles

    Get PDF
    Nanoparticles with nominal structures of Au@Ag (core@shell) and Au@Ag@Au (core@shell@shell) were prepared using the sequential citrate reduction technique and characterized using routine characterization techniques, including transmission electron microscopy. X-ray absorption spectroscopy was then carried out on the samples, and extended X-ray absorption fine structure (EXAFS) analysis was used to determine the structure of the systems. The results of the routine techniques and the X-ray absorption spectroscopy were then compared. EXAFS analysis of the nanoparticles with the Au@Ag structure revealed very limited bimetallic interactions, supporting the assignment of a core@shell structure. EXAFS analysis of the nanoparticles with Au@Ag@Au structure showed an increased proportion of bimetallic interactions. Based on the colloid composition, the other characterization techniques and the chemistry of the system, these nanoparticles were interpreted as having an Au@Au/Ag-alloy structure. The EXAFS analyses corroborated the other characterization techniques and enabled the determination of the average-structure of the entire sample

    Multicore magnetic FePt nanoparticles: controlled formation and properties

    Get PDF
    Research on magnetic nanoparticles (NPs) has become one of the most active and exciting fields in materials science. The challenge is to produce magnetic NPs with high magnetic saturation without exceeding the super-paramagnetic limit so that they may be used as non-permanent magnets in biomedicine and catalysis. FePt offers enhanced saturation magnetisation properties compared to iron oxide, however synthetic methods require fine-tuning to achieve these superior properties. Multicore FePt NPs up to 44 nm in diameter and composed of Pt rich FePt nanocrystals within an iron rich FePt matrix not previously seen in the literature are presented here. The results indicate that coordination of Fe and Pt intermediates with oleic acid and oleylamine respectively hinders deposition of each respective metal in the growth of discrete and multicore NPs

    Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications

    Get PDF
    Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g−1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer–Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumou

    Formation of clumps and patches in self-aggregation of finite size particles

    Full text link
    New model equations are derived for dynamics of self-aggregation of finite-size particles. Differences from standard Debye-Huckel and Keller-Segel models are: a) the mobility μ\mu of particles depends on the locally-averaged particle density and b) linear diffusion acts on that locally-averaged particle density. The cases both with and without diffusion are considered here. Surprisingly, these simple modifications of standard models allow progress in the analytical description of evolution as well as the complete analysis of stationary states. When μ\mu remains positive, the evolution of collapsed states in our model reduces exactly to finite-dimensional dynamics of interacting particle clumps. Simulations show these collapsed (clumped) states emerging from smooth initial conditions, even in one spatial dimension. If μ\mu vanishes for some averaged density, the evolution leads to spontaneous formation of \emph{jammed patches} (weak solution with density having compact support). Simulations confirm that a combination of these patches forms the final state for the system.Comment: 38 pages, 8 figures; submitted to Physica

    ケッシ ハチダイ ニツイテ ジョウ

    Get PDF
    論説(Article

    Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Get PDF
    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(III) and Co(II) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4–30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications
    corecore