18 research outputs found

    Enhanced Spin-to-Charge Conversion Efficiency in Ultrathin Bi2Se3Observed by Spintronic Terahertz Spectroscopy

    No full text
    © 2021 American Chemical Society.Owing to their remarkable spin-charge conversion (SCC) efficiency, topological insulators (TIs) are the most attractive candidates for spin-orbit torque generators. The simple method of enhancing SCC efficiency is to reduce the thickness of TI films to minimize the trivial bulk contribution. However, when the thickness reaches the ultrathin regime, the SCC efficiency decreases owing to intersurface hybridization. To overcome these contrary effects, we induced dehybridization of the ultrathin TI film by breaking the inversion symmetry between surfaces. For the TI film grown on an oxygen-deficient transition-metal oxide, the unbonded transition-metal d-orbitals affected only the bottom surface, resulting in asymmetric surface band structures. Spintronic terahertz emission spectroscopy, an emerging tool for investigating the SCC characteristics, revealed that the resulting SCC efficiency in symmetry-broken ultrathin Bi2Se3 was enhanced by up to ∼2.4 times.11Nsciescopu

    Conductance Control in VO2 Nanowires by Surface Doping with Gold Nanoparticles

    No full text
    The material properties of semiconductor nanowires are greatly affected by electrical, optical, and chemical processes occurring at their surfaces because of the very large surface-to-volume ratio. Precise control over doping as well as the surface charge properties has been demonstrated in thin films and nanowires for fundamental physics and application-oriented research. However, surface doping behavior is expected to differ markedly from bulk doping in conventional semiconductor materials. Here, we show that placing gold nanoparticles, in controlled manner, on the surface of an insulating vanadium dioxide nanowire introduces local charge carriers in the nanowire, and one could, in principle, completely and continuously alter the material properties of the nanowire and obtain any intermediate level of conductivity. The current in the nanowire increased by nearly 3 times when gold nanoparticles of 10(11) cm(-2) order of density were controllably placed on the nanowire surface. A strong quadratic space-charge limited (SCL) transport behavior was also observed from the conductance curve suggesting the formation of two-dimensional (2D) electron-gas-like confined layer in the nanowire with adsorbed Au NPs. In addition to stimulating scientific interest, such unusual surface doping phenomena may lead to new applications of vanadium dioxide-based electronic, optical, and chemical sensing nanodevices.close
    corecore