17 research outputs found

    Influence du climat, de la disponibilité des ressources et de la taille des populations sur la phénologie et les patrons de migration du caribou migrateur, "Rangifer tarandus"

    Get PDF
    De nombreuses populations migratrices sont actuellement en déclin. Les changements climatiques entrainent des modifications dans les habitats des espèces migratrices et la phénologie des processus naturels, lesquels se répercutent sur la migration, une période critique pour ces espèces. Comprendre comment les variables environnementales et climatiques affectent la phénologie et les patrons de migration est donc crucial. Ma thèse s'intéresse à l'impact du climat, des ressources alimentaires et de la compétition sur les migrations printanières et automnales des caribous migrateurs, Rangifer tarandus, des troupeaux Rivière-George (TRG) et Rivière-aux-Feuilles (TRF) du Nord-du-Québec et du Labrador. Le premier volet de ma thèse propose une approche objective, basée sur la détection des changements dans la structure des déplacements saisonniers, pour identifier les dates de départ et arrivée en migration. Validée à l'aide de trajets simulés, elle a été appliquée aux migrations printanières et automnales de femelles caribous. Le second volet porte sur l'impact des conditions environnementales sur la phénologie des migrations de printemps et d'automne. Il montre que la phénologie de la migration est principalement affectée par les conditions climatiques rencontrées lors de la migration, les conditions d'enneigement affectant notamment les coûts des déplacements. Au printemps, les caribous subissent des conditions défavorables lorsque la fonte des neiges est précoce. À l'automne, ils semblent ajuster leurs déplacements et migrent plus vite quand la neige débute tôt pour limiter les coûts de déplacement dans une neige profonde. Le troisième volet porte sur les patrons de migration à l'automne et montre que ceux-ci sont affectés essentiellement par une compétition intra- et inter-troupeaux pour les aires d'hivernages. Les caribous du TRG répondent à une augmentation de la compétition sur les aires les plus proches de l'aire de mise bas, liée à une taille de population élevée, en migrant préférentiellement vers les aires les plus éloignées. L'utilisation des aires hivernales par les caribous du TRF est, quant à elle, contrainte par la présence et l’abondance du TRG, cette contrainte diminuant à mesure que le TRG décline et abandonne les migrations vers les aires d'hivernages communes aux deux troupeaux. Cette thèse améliore notre compréhension de l'influence des facteurs environnementaux sur la phénologie et les patrons de migration du caribou migrateur. Ces connaissances sont très utiles pour comprendre l'impact des changements climatiques et établir les plans de conservation pour les espèces migratrices.Several populations of migratory species are actually declining. Climate changes affect the habitat of migratory species and the phenology of natural processes, and impact the migration, a critical period for migratory species. Thus, it is crucial to understand how environmental and climatic variables affect the timing and the patterns of migration. This thesis assesses the impact of climate, food resources and competition on the spring and fall migrations of migratory caribou, Rangifer tarandus, from the Rivière-George (RGH) and Rivière-aux-Feuilles (RFH) herds, in Northern Québec and Labrador. The first part of my thesis presents an objective approach, based on the detection of changes in the structure of seasonal movements, to assess the departure and the arrival dates of the migrations. The approach was validated on simulated paths, and was then applied on the spring and fall migrations of female caribou. The second part focuses on the impact of environmental conditions on the phenology of the spring and fall migrations. It revealed that migration is mainly affected by the climatic conditions encountered during migration, snow conditions partly determining the cost of movements. In the spring, caribou suffer from adverse conditions when the snowmelt is early. In the fall, caribou adjust their movements and migrate faster when snowfall occurs early to limit the cost of moving through deep snow. The third part of my thesis focuses on fall migration patterns and revealed that migration patterns are mainly affected by intra- and inter-herds competition for the winter ranges. Caribou from RGH migrate preferentially toward the furthest winter ranges in response to increased competition, linked with a high population size, limiting the competition on the closest winter ranges. The use of the winter ranges by caribou from RFH is constrained by the abundance of RGH. This constraint decreased as RGH declined and abandoned the migrations toward the winter ranges commonly used by both herds. My thesis increases our knowledge of the environmental factors that affect the phenology and patterns of caribou migrations. This knowledge is useful to understand the impact of climate changes and establish conservation plans for migratory species

    Detecting changes in the annual movements of terrestrial migratory species : using the first-passage time to document the spring migration of caribou

    Get PDF
    Background : Migratory species face numerous threats related to human encroachment and climate change. Several migratory populations are declining and individuals are losing their migratory behaviour. To understand how habitat loss or changes in the phenology of natural processes affect migrations, it is crucial to clearly identify the timing and the patterns of migration. We propose an objective method, based on the detection of changes in movement patterns, to identify departure and arrival dates of the migration. We tested the efficiency of our approach using simulated paths before applying it to spring migration of migratory caribou from the Rivière-George and Rivière-aux-Feuilles herds in northern Québec and Labrador. We applied the First-Passage Time analysis (FPT) to locations of 402 females collected between 1986 and 2012 to characterize their movements throughout the year. We then applied a signal segmentation process in order to segment the path of FPT values into homogeneous bouts to discriminate migration from seasonal range use. This segmentation process was used to detect the winter break and the calving ground use because spring migration is defined by the departure from the winter range and the arrival on the calving ground. Results : Segmentation of the simulated paths was successful in 96% of the cases, and had a high precision (96.4% of the locations assigned to the appropriate segment). Among the 813 winter breaks and 669 calving ground use expected to be detected on the FPT profiles, and assuming that individuals always reduced movements for each of the two periods, we detected 100% of the expected winter breaks and 89% of the expected calving ground use, and identified 648 complete spring migrations. Failures to segment winter breaks or calving ground use were related to individuals only slowing down or performing less pronounced pauses resulting in low mean FPT. Conclusion : We show that our approach, which relies only on the analysis of movement patterns, provides a suitable and easy-to-use tool to study species exhibiting variations in their migration patterns and seasonal range use

    Laser ablation strontium isotopes and spatial assignment show seasonal mobility in red deer (Cervus elaphus) at Lazaret Cave, France (MIS 6)

    Get PDF
    Funding statement This research is part of the collective research project named “Paleoecology of the Lazaret cave: human-environment interactions on the coast of the meridional Alps during the late Middle Pleistocene (MIS6)”, granted by the DRAC PACA (French Ministry of Culture). SB thanks QUADRAT DTP NERC (NE/S007377/1) studentship for stipend support. KB and MLC thank the Leverhulme Trust (RPG-2017-410 and PLP-2019-284) for support during the production of this paper.Peer reviewedPublisher PD

    Sampling Plants and Malacofauna in 87Sr/86Sr Bioavailability Studies : implications for isoscape mapping and reconstructing of past mobility patterns

    Get PDF
    Acknowledgments: We thank Annabell Reiner and Sven Steinbrenner (MPI-EVA) for technical and practical support with preparation and analysis of samples. We thank the La Ferrassie Team for support during field sampling and project development, especially Harold Dibble, Shannon McPherron (MPI-EVA), Teresa Steele (UC Davies), Vera Aldeias (MPI-EVA, University of Algarve), Paul Goldberg (University of Wollongong, University Tübingen), Dennis Sandgathe (Simon Fraser University, University of Pennsylvania), Alain Turq (Musée national de Préhistoire, CNRS), and Jean-Jacques Hublin (MPI-EVA), as well as Mike Richards (SFU). Special thanks to Daphne Katranides and Aaron Katranides. We also thank the editor (TP) and two reviewers whose constructive comments greatly improved this manuscript. Funding: This research was funded by the Max Planck Society and a Leverhulme Trust grant to KB (RPG-2017-410), with additional support from Australian Research Council Discovery grants DP0664144 and DP110101417 to RG. KJ thanks the ERC ARCHEIS 803676, and IM thanks Australian Research Council Discovery Early Career Award (DE160100703), for salary support during production of this manuscript.Peer reviewedPublisher PD

    Multi-isotope analysis of bone collagen of Late Pleistocene ungulates reveals niche partitioning and behavioural plasticity of reindeer during MIS 3

    Get PDF
    Acknowledgements This research was funded by a Leverhulme Research Project Grant (ref: RPG-2017-410 to K.B.), and the Max Planck Institute for Evolutionary Anthropology. A Philip Leverhulme Prize (ref: PLP-2019-284 to K.B.) provided support to K.B. during the production of this manuscript, and M.S. is funded by the NWO Dutch Research council (VICI award VI.C.191.07). We thank C.-H. Bachelier and Jaques Bachelier for facilitating and supporting research at Les Cottés, and the French Ministry of Culture for allowing and funding research at Les Cottés. Thanks to Sven Steinbrenner and Annabell Reiner (MPI-EVA), and Orsolya Czére (Aberdeen) for laboratory assistance, and to Jovita Fawcett and Eléa Gutierrez (Aberdeen) for proof reading and assistance with images.Peer reviewedPublisher PD

    A multi-patch use of the habitat: testing the First-Passage Time analysis on roe deer paths

    Get PDF
    A heterogeneous environment includes several levels of resource aggregation. Individuals do not respond in the same way to this heterogeneity depending on the scale at which they perceive it, and develop different foraging tactics accordingly. The development of methods to analyse animal movements has enabled the study of foraging tactics at several scales. Nevertheless, applied to large vertebrates, these methods have generally been used at large scales, such as for migration trips or the study of marine patches several kilometres large. In this study, we applied a recent method, the First-Passage Time analysis, based on a measure of the foraging effort along the path, to a much finer scale, i.e. under 500 meters. We used 30 daily paths of highly sedentary roe deer females. We modified the initial method, developed by Fauchald and Tveraa (2003), to detect a multi-patch use of the habitat. First-Passage Time analysis results showed that most of the female roe deer exploited their home range as a patchy resource, ranging from 1 to 5 areas of intensive use in their home range. These areas were identified as the most attractive sites within the roe deer female home range. Moreover, this method allowed us to rank the attractive areas according to the time spent in each area. Coupled with habitat selection analysis to identify what makes these areas attractive, the First-Passage Time analysis should offer a suitable tool for landscape ecology and management

    Caribou herd dynamics : impacts of climate change on traditional and sport harvesting

    Get PDF
    Caribou (Rangifer tarandus) are a key species in Arctic ecosystems including northern Québec and Labrador. They play a central role in the ecology of predators and the structure of Arctic plant communities. In addition, caribou provide socioeconomic and cultural benefits from subsistence and sport hunting activities. Changes in the distribution and abundance of caribou due to global climate change would have serious biological, societal, and economic implications. Direct and indirect consequences of climate change on migratory caribou herds may include alteration in habitat use, migration patterns, foraging behaviour and demography. For example, caribou may experience a further northerly shift in distribution due to several factors including longer ice-free periods, increases in snowfall and extreme weather events, alterations in the fire regime, and changes in the distribution of insects and predators. Future research by Caribou Ungava, a research group interested in the ecology of migratory caribou in the context of climate change, will address the factors outlining variations in the population dynamics of caribou, implications for survival and reproduction, as well as the response of caribou habitat to different climate change scenarios. Management efforts focusing on mitigating greenhouse gases to reduce the potential effects of climate change, preserving high quality habitat, limiting anthropogenic landscape disturbances, and managing hunting in a sustainable manner, could alleviate stressors on migratory caribou of the QuébecLabrador peninsula

    Sampling Plants and Malacofauna in 87Sr/86Sr Bioavailability Studies: Implications for Isoscape Mapping and Reconstructing of Past Mobility Patterns

    Get PDF
    Establishing strontium isotope (87Sr/86Sr) geographical variability is a key component of any study that seeks to utilize strontium isotopes as tracers of provenance or mobility. Although lithological maps can provide a guideline, estimations of bioavailable 87Sr/86Sr are often necessary, both in qualitative estimates of local strontium isotope "catchments" and for informing/refining isoscape models. Local soils, plants and/or animal remains are commonly included in bioavailability studies, although consensus on what (and how extensively) to sample is lacking. In this study, 96 biological samples (plants and snails) were collected at 17 locations spanning 6 lithological units, within a region of south-west France and an area with a high concentration of Paleolithic archaeological sites. Sampling sites aligned with those from a previous study on soil bioavailable strontium, and comparison with these values, and the influence of environmental and anthropogenic variables, was explored. Data confirm a broad correspondence of plant and snail 87Sr/86Sr values with lithological unit/soil values, although the correlation between expected 87Sr/86Sr values from lithology and bioavailable 87Sr/86Sr ratios from biological samples was higher for plants than for snails. Grass, shrub and tree 87Sr/86Sr values were similar but grasses had a stronger relationship with topsoil values than trees, reflecting differences in root architecture. Variability in 87Sr/86Sr ratios from all plant samples was lower for sites located on homogeneous geological substrates than for those on heterogeneous substrates, such as granite. Among environmental and anthropogenic variables, only an effect of proximity to water was detected, with increased 87Sr/86Sr values in plants from sites close to rivers originating from radiogenic bedrock. The results highlight the importance of analyzing biological samples to complement, inform and refine strontium isoscape models. The sampling of plants rather than snails is recommended, including plants of varying root depth, and (if sample size is a limitation) to collect a greater number of samples from areas with heterogeneous geological substrates to improve the characterizations of those regions. Finally, we call for new experimental studies on the mineralized tissues of grazers, browsers, frugivores and/or tree leaf feeders to explore the influence of 87Sr/86Sr variability with soil profile/root architecture on 87Sr/86Sr values of locally-feeding fauna.This research was funded by the Max Planck Society and a Leverhulme Trust grant to KB (RPG-2017-410), with additional support from Australian Research Council Discovery grants DP0664144 and DP110101417 to RG. KJ thanks the ERC ARCHEIS 803676, and IM thanks Australian Research Council Discovery Early Career Award (DE160100703), for salary support during production of this manuscript

    Laser ablation strontium isotopes and spatial assignment show seasonal mobility in red deer (Cervus elaphus) at Lazaret Cave, France (MIS 6)

    Get PDF
    Zooarchaeological analysis is a useful means of exploring faunal palaeoecology, paleoclimate and past human behaviours. The Middle Pleistocene archaeological site Lazaret Cave, located in modern-day Nice, France, features a vast assemblage of faunal remains pertinent to the understanding of early Neanderthal subsistence behaviours as well as red deer (Cervus elaphus) ecology during MIS 6. This pilot study examines materials from archaeological layer UA25, a short-term occupation layer at Lazaret dating to ~150,000 years ka, which has revealed 28 early Neanderthal remains as well as thousands of faunal bones, of which red deer and ibex (Capra ibex) are most abundant. Molars from three red deer mandibles and a single ibex were analysed for strontium (87Sr/86Sr) isotopic analysis using laser ablation mass spectrometry to determine animal movements during tooth formation, combined with intra-tooth oxygen (δ18O) isotope analysis to determine seasonality. The isotope data was modelled within a local 87Sr/86Sr isoscape and computational spatial assignment was undertaken to reconstruct potential summer and winter ranges of red deer. Results from this pilot study show seasonal mobility within 20 km of Lazaret, identifying two possible summer and winter ranges for the red deer excavated from UA25. Both possible summer ranges are located at higher elevations further from Lazaret while winter ranges have been assigned to lower elevations closer to the coastline and closer to Lazaret. The ibex shows no 87Sr/86Sr variation throughout the first, second and third molar and the spatial assignment indicates it lived proximal to the site during the period of tooth formation. In addition to providing the first evidence of red deer spatial ecology in southern France during MIS 6, we also infer from the faunal isotope data that hominins at Lazaret Cave were likely hunting red deer in autumn and winter when they were closer to the cave site, while hunting in summer would have required up to 20 km of travel

    Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany

    Get PDF
    The spread of Homo sapiens into new habitats across Eurasia ~45,000 years ago and the concurrent disappearance of Neanderthals represents a critical evolutionary turnover in our species' history. 'Transitional' technocomplexes, such as the Lincombian-Ranisian-Jerzmanowician (LRJ), characterize the European record during this period but their makers and evolutionary significance have long remained unclear. New evidence from Ilsenhöhle in Ranis, Germany, now provides a secure connection of the LRJ to H. sapiens remains dated to ~45,000 years ago, making it one of the earliest forays of our species to central Europe. Using many stable isotope records of climate produced from 16 serially sampled equid teeth spanning ~12,500 years of LRJ and Upper Palaeolithic human occupation at Ranis, we review the ability of early humans to adapt to different climate and habitat conditions. Results show that cold climates prevailed across LRJ occupations, with a temperature decrease culminating in a pronounced cold excursion at ~45,000-43,000 cal BP. Directly dated H. sapiens remains confirm that humans used the site even during this very cold phase. Together with recent evidence from the Initial Upper Palaeolithic, this demonstrates that humans operated in severe cold conditions during many distinct early dispersals into Europe and suggests pronounced adaptability. [Abstract copyright: © 2024. The Author(s).
    corecore