180 research outputs found
Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: A randomized controlled trial using web 2.0 applications to promote physical activity.
OBJECTIVE: To describe in detail the recruitment methods and enrollment rates, the screening methods, and the baseline characteristics of a sample of adults participating in the Walk 2.0 Study, an 18 month, 3-arm randomized controlled trial of a Web 2.0 based physical activity intervention. METHODS: A two-fold recruitment plan was developed and implemented, including a direct mail-out to an extract from the Australian Electoral Commission electoral roll, and other supplementary methods including email and telephone. Physical activity screening involved two steps: a validated single-item self-report instrument and the follow-up Active Australia Questionnaire. Readiness for physical activity participation was also based on a two-step process of administering the Physical Activity Readiness Questionnaire and, where needed, further clearance from a medical practitioner. RESULTS: Across all recruitment methods, a total of 1244 participants expressed interest in participating, of which 656 were deemed eligible. Of these, 504 were later enrolled in the Walk 2.0 trial (77% enrollment rate) and randomized to the Walk 1.0 group (n = 165), the Walk 2.0 group (n = 168), or the Logbook group (n = 171). Mean age of the total sample was 50.8 years, with 65.2% female and 79.1% born in Australia. CONCLUSION: The results of this recruitment process demonstrate the successful use of multiple strategies to obtain a diverse sample of adults eligible to take part in a web-based physical activity promotion intervention. The use of dual screening processes ensured safe participation in the intervention. This approach to recruitment and physical activity screening can be used as a model for further trials in this area
Using Web 2.0 applications to promote health-related physical activity: findings from the WALK 2.0 randomised controlled trial.
BACKGROUND/AIM: Web 2.0 internet technology has great potential in promoting physical activity. This trial investigated the effectiveness of a Web 2.0-based intervention on physical activity behaviour, and the impact on website usage and engagement. METHODS: 504 (328 women, 126 men) insufficiently active adult participants were randomly allocated to one of two web-based interventions or a paper-based Logbook group. The Web 1.0 group participated in the existing 10 000 Steps programme, while the Web 2.0 group participated in a Web 2.0-enabled physical activity intervention including user-to-user interaction through social networking capabilities. ActiGraph GT3X activity monitors were used to assess physical activity at four points across the intervention (0, 3, 12 and 18 months), and usage and engagement were assessed continuously through website usage statistics. RESULTS: Treatment groups differed significantly in trajectories of minutes/day of physical activity (p=0.0198), through a greater change at 3 months for Web 2.0 than Web 1.0 (7.3 min/day, 95% CI 2.4 to 12.3). In the Web 2.0 group, physical activity increased at 3 (mean change 6.8 min/day, 95% CI 3.9 to 9.6) and 12 months (3.8 min/day, 95% CI 0.5 to 7.0), but not 18 months. The Logbook group also increased physical activity at 3 (4.8 min/day, 95% CI 1.8 to 7.7) and 12 months (4.9 min/day, 95% CI 0.7 to 9.1), but not 18 months. The Web 1.0 group increased physical activity at 12 months only (4.9 min/day, 95% CI 0.5 to 9.3). The Web 2.0 group demonstrated higher levels of website engagement (p=0.3964). CONCLUSIONS: In comparison to a Web 1.0 intervention, a more interactive Web 2.0 intervention, as well as the paper-based Logbook intervention, improved physical activity in the short term, but that effect reduced over time, despite higher levels of engagement of the Web 2.0 group. TRIAL REGISTRATION NUMBER: ACTRN12611000157976
Associations between quality of life and duration and frequency of physical activity and sedentary behaviour: Baseline findings from the WALK 2.0 randomised controlled trial.
While physical and mental health benefits of regular physical activity are well known, increasing evidence suggests that limiting sedentary behaviour is also important for health. Evidence shows associations of physical activity and sedentary behaviour with health-related quality of life (HRQoL), however, these findings are based predominantly on duration measures of physical activity and sedentary behaviour (e.g., minutes/week), with less attention on frequency measures (e.g., number of bouts). We examined the association of HRQoL with physical activity and sedentary behaviour, using both continuous duration (average daily minutes) and frequency (average daily bouts≥10 min) measures. Baseline data from the WALK 2.0 trial were analysed. WALK 2.0 is a randomised controlled trial investigating the effects of Web 2.0 applications on engagement, retention, and subsequent physical activity change. Daily physical activity and sedentary behaviour (duration = average minutes, frequency = average number of bouts ≥10 minutes) were measured (ActiGraph GT3X) across one week, and HRQoL was assessed with the 'general health' subscale of the RAND 36-Item Health Survey. Structural equation modelling was used to evaluate associations. Participants (N = 504) were 50.8±13.1 (mean±SD) years old with a BMI of 29.3±6.0. The 465 participants with valid accelerometer data engaged in an average of 24.0±18.3 minutes and 0.64±0.74 bouts of moderate-vigorous physical activity per day, 535.2±83.8 minutes and 17.0±3.4 bouts of sedentary behaviour per day, and reported moderate-high general HRQoL (64.5±20.0). After adjusting for covariates, the duration measures of physical activity (path correlation = 0.294, p<0.05) and sedentary behaviour were related to general HRQoL (path coefficient = -0.217, p<0.05). The frequency measure of physical activity was also significant (path coefficient = -0.226, p<0.05) but the frequency of sedentary behaviour was not significantly associated with general HRQoL. Higher duration levels of physical activity in fewer bouts, and lower duration of sedentary behaviour are associated with better general HRQoL. Further prospective studies are required to investigate these associations in different population groups over time
DNA sense-and-respond protein modules for mammalian cells
We generated synthetic protein components that can detect specific DNA sequences and subsequently trigger a desired intracellular response. These modular sensors exploit the programmability of zinc-finger DNA recognition to drive the intein-mediated splicing of an artificial trans-activator that signals to a genetic circuit containing a given reporter or response gene. We used the sensors to mediate sequence recognition−induced apoptosis as well as to detect and report a viral infection. This work establishes a synthetic biology framework for endowing mammalian cells with sentinel capabilities, which provides a programmable means to cull infected cells. It may also be used to identify positively transduced or transfected cells, isolate recipients of intentional genomic edits and increase the repertoire of inducible parts in synthetic biology.United States. Defense Advanced Research Projects Agency (DARPA-BAA-11-23)Defense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006)United States. Air Force Office of Scientific Research (FA9550-14-1-0060
Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs)
Zinc Finger Nucleases (ZFNs) made by Context-Dependent Assembly (CoDA) and Transcription Activator-Like Effector Nucleases (TALENs) provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%–76.8% compared to 1.1%–3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish
Asteroseismology
Asteroseismology is the determination of the interior structures of stars by
using their oscillations as seismic waves. Simple explanations of the
astrophysical background and some basic theoretical considerations needed in
this rapidly evolving field are followed by introductions to the most important
concepts and methods on the basis of example. Previous and potential
applications of asteroseismology are reviewed and future trends are attempted
to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar
Systems", eds. T. D. Oswalt et al., Springer Verla
Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors
The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator–like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.Harvard University. Society of FellowsNational Human Genome Research Institute (U.S.) (Center for Excellence in Genomics Science P50 HG003170)United States. Dept. of Energy (Genomes to Life DE-FG02-02ER63445)United States. Defense Advanced Research Projects Agency (W911NF-08-1-0254, G.M.C.)Wyss Institute of Biologically Inspired EngineeringNational Institutes of Health (U.S.) (Transformative R01 (R01 NS073124-01))European School of Molecular Medicine (predoctoral fellowship
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Physical Properties of Wolf-Rayet Stars
The striking broad emission line spectroscopic appearance of Wolf-Rayet (WR)
stars has long defied analysis, due to the extreme physical conditions within
their line and continuum forming regions. Recently, model atmosphere studies
have advanced sufficiently to enable the determination of stellar temperatures,
luminosities, abundances, ionizing fluxes and wind properties. The observed
distributions of nitrogen (WN) and carbon (WC) sequence WR stars in the Milky
Way and in nearby star forming galaxies are discussed; these imply lower limits
to progenitor masses of ~25, 40, 75 Msun for hydrogen-depleted (He-burning) WN,
WC, and H-rich (H-burning) WN stars, respectively. WR stars in massive star
binaries permit studies of wind-wind interactions and dust formation in WC
systems. They also show that WR stars have typical masses of 10-25 Msun,
extending up to 80 Msun for H-rich WN stars. Theoretical and observational
evidence that WR winds depend on metallicity is presented, with implications
for evolutionary models, ionizing fluxes, and the role of WR stars within the
context of core-collapse supernovae and long-duration gamma ray bursts.Comment: 76 pages, 8 figures. Minor revision to "Annual Review of Astronomy &
Astrophysics" review article Volume 45 (2007) following editors comments.
Version with full resolution figures is available from
ftp://astro1.shef.ac.uk/pub/pac/AnnRev_revised.pd
Conformational Dynamics of Single pre-mRNA Molecules During \u3cem\u3eIn Vitro\u3c/em\u3e Splicing
The spliceosome is a complex small nuclear RNA (snRNA)-protein machine that removes introns from pre-mRNAs via two successive phosphoryl transfer reactions. The chemical steps are isoenergetic, yet splicing requires at least eight RNA-dependent ATPases responsible for substantial conformational rearrangements. To comprehensively monitor pre-mRNA conformational dynamics, we developed a strategy for single-molecule FRET (smFRET) that uses a small, efficiently spliced yeast pre-mRNA, Ubc4, in which donor and acceptor fluorophores are placed in the exons adjacent to the 5′ and 3′ splice sites. During splicing in vitro, we observed a multitude of generally reversible time-and ATP-dependent conformational transitions of individual pre-mRNAs. The conformational dynamics of branchpoint and 3′-splice site mutants differ from one another and from wild type. Because all transitions are reversible, spliceosome assembly appears to be occurring close to thermal equilibrium
- …