The striking broad emission line spectroscopic appearance of Wolf-Rayet (WR)
stars has long defied analysis, due to the extreme physical conditions within
their line and continuum forming regions. Recently, model atmosphere studies
have advanced sufficiently to enable the determination of stellar temperatures,
luminosities, abundances, ionizing fluxes and wind properties. The observed
distributions of nitrogen (WN) and carbon (WC) sequence WR stars in the Milky
Way and in nearby star forming galaxies are discussed; these imply lower limits
to progenitor masses of ~25, 40, 75 Msun for hydrogen-depleted (He-burning) WN,
WC, and H-rich (H-burning) WN stars, respectively. WR stars in massive star
binaries permit studies of wind-wind interactions and dust formation in WC
systems. They also show that WR stars have typical masses of 10-25 Msun,
extending up to 80 Msun for H-rich WN stars. Theoretical and observational
evidence that WR winds depend on metallicity is presented, with implications
for evolutionary models, ionizing fluxes, and the role of WR stars within the
context of core-collapse supernovae and long-duration gamma ray bursts.Comment: 76 pages, 8 figures. Minor revision to "Annual Review of Astronomy &
Astrophysics" review article Volume 45 (2007) following editors comments.
Version with full resolution figures is available from
ftp://astro1.shef.ac.uk/pub/pac/AnnRev_revised.pd